# Total Synthesis of Brevisamide Using an Oxiranyl Anion Strategy 

Takeo Sakai, Ayumi Fukuta, Kumiko Nakamura, Masato Nakano, and Yuji Mori*<br>Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan

## (5) Supporting Information


#### Abstract

A total synthesis of brevisamide, a marine monocyclic ether amide isolated from the dinoflagellate Karenia brevis, has been achieved in 18 steps starting from 4-(benzyloxy)butanol. The synthesis involves oxiranyl anion coupling between an epoxy sulfone and a triflate, intramolecular etherification of a hydroxy-bromoketone, diastereoselective introduction of the  axial methyl group by hydroxyl-directed hydrogenation of an exocyclic olefin, and installation of an acetamide side chain by nucleophilic substitution of an $N$-acetyl carbamate. The dienal side chain is assembled using a Horner-Wadsworth-Emmons reaction to complete the synthesis.


## INTRODUCTION

Karenia brevis is a harmful red-tide dinoflagellate known as a causative organism responsible for massive fish kills and shellfish poisoning, ${ }^{1}$ as the result of its production of neurotoxic polycyclic ethers called brevetoxins. ${ }^{2}$ Recent studies have shown that $K$. brevis also synthesizes natural functional antagonists of brevetoxins. These compounds, brevenal, ${ }^{3}$ brevisin, ${ }^{4}$ and tamulamides, ${ }^{5}$ are nontoxic and work to block the brevetoxin-binding sites of activate voltage-sensitive sodium channels ${ }^{6}$ to reduce the neurotoxic effect of brevetoxins. ${ }^{7}$ In 2008, Wright and co-workers isolated an unprecedented monocyclic ether alkaloid, brevisamide (1), from K. brevis (Figure 1). ${ }^{8}$ Brevisamide is believed to be the simplest compound produced via the 6 -endo epoxide-opening reaction that is well-known as a hypothetical mechanism for the biosynthesis of polycyclic ether natural products. ${ }^{9}$ This


Figure 1. Structures of brevisamide, brevenal, brevisin, and tamulamide A and B.
molecule has a hybrid structure comprising the A ring of brevenal and brevisin, including the 3,4-dimethylhepta-2,4dienal side chain, and the A ring of the tamulamides, possessing an acetamide side chain. This unique biosynthetic product has attracted the attention of organic chemists, and seven total ${ }^{10,13,14,16,17,19}$ and six formal ${ }^{11,12,15,18}$ syntheses have appeared in the literature since the first report by Satake and Tachibana in 2009. ${ }^{10 \mathrm{a}}$ An overview of these synthetic strategies is provided in Figure 2. Many of these syntheses feature the


Figure 2. Strategic overview of the synthesis of brevisamide (1).
construction of a tetrahydropyran (THP) core via C12-O bond formation, and include lactonization, ${ }^{10}$ epoxide ringopening, ${ }^{11}$ and oxa-Michael cyclization, ${ }^{12}$ as well as $\mathrm{C} 8-\mathrm{O}$ bond formation by the Williamson ether synthesis. ${ }^{13}$ Other approaches involving $\mathrm{C}-\mathrm{C}$ bond formation are $\mathrm{SmI}_{2}$-induced cyclization at the $\mathrm{C} 11-\mathrm{C} 12$ site ${ }^{14}$ and ring-closing metathesis at the $\mathrm{C} 9-\mathrm{C} 10$ position. ${ }^{15} \mathrm{~A}[4+2]$ annulation approach to the THP ring involves a hetero-Diels-Alder reaction ${ }^{16}$ and a crotylsilane-based annulation reaction. ${ }^{17}$ The Achmatowicz rearrangement of a furan to a THP ring was employed in the synthesis of enantiomeric brevisamide. ${ }^{18}$ Moreover, a chiral pool approach has been reported using 3-deoxy-d-glucal. ${ }^{19}$ Our synthesis of brevisamide begins with an oxiranyl anion strategy that has proven to be very effective for the synthesis of both simple and highly complex polycyclic ether natural products. ${ }^{20}$ We herein report a total synthesis of brevisamide using oxiranyl

[^0]anion coupling to generate the THP core and an N-selective alkylation for the acetamide side chain.

## RESULTS AND DISCUSSION

Our retrosynthetic analysis of brevisamide (1) is outlined in Scheme 1. The unstable dienal side chain is introduced at the

Scheme 1. Retrosynthetic Analysis of Brevisamide (1)

final stage of the synthesis by the Horner-WadsworthEmmons (HWE) reaction between phosphonate 2 and aldehyde 3 according to the method of Lindsley et al. ${ }^{14}$ The attachment of the acetamide moiety of $\mathbf{3}$ was planned by means of the N -alkylation reaction of an acetamide nucleophile with triflate 4 . The axial methyl group of 4 would be introduced by hydrogenation of an exocyclic methylene synthesized from ketone 5. The construction of the THP core was designed based on the use of oxiranyl anion coupling between epoxy sulfone 6 and alkyl triflate 7 .

The synthesis commenced with the oxidation of commercially available 4-(benzyloxy)butanol (8) to aldehyde 9 (Scheme 2). The Horner-Wadsworth-Emmons reaction with diethyl ( $p$-toluenesulfonyl)methylphosphonate under Masamune-Roush conditions ${ }^{21}$ provided vinyl sulfone 10, which was oxidized to epoxy sulfone 6 using $t$ - BuOOH under basic conditions. The oxiranyl anion coupling reaction was conducted with epoxy sulfone 6 and triflate 7 prepared from dglucal in three steps, ${ }^{22}$ and the coupling product 11 was obtained in $84 \%$ yield. Selective removal of the TES group in the presence of a silylene protecting group under mild acidic conditions followed by epoxide ring cleavage with $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ resulted in the formation of bromoketone 13. The DBUmediated $\mathrm{S}_{\mathrm{N}} 2$ cyclization provided the 6 -membered ketone 5 along with its C4 epimer (epi-5), which was isomerized to the desired isomer under the same reaction conditions. The ketone was then transformed into exomethylene 14 by a Wittig reaction in $92 \%$ yield. An initial attempt at the catalytic hydrogenation of 14 using $10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ was found to give 19 with moderate axial/equatorial selectivity (vide infra). Subsequently, we prepared other substrates, diol 15 and alcohol 16, for further hydrogenation studies by removing the silylene group of $\mathbf{1 4}$ followed by the selective protection of the primary alcohol as its TBS ether.

The stereoselective introduction of an axial methyl group on the THP ring by catalytic hydrogenation is one of the key steps in the present synthesis. The same approach was used by

Scheme 2. Construction of the THP Ring Using an Oxiranyl Anion Strategy


Sridhar and co-workers, who reported that hydrogenation of exo-olefin 17 using $\mathrm{Pd} / \mathrm{C}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ proceeded from the sterically less hindered equatorial face to afford the axial methyl isomer 18 with a diastereomeric ratio of $75: 25$ (Scheme 3). ${ }^{19}$

Scheme 3. Palladium and Rhodium-Catalyzed
Hydrogenation of Exo-olefins 17 and 14


We initially expected that olefin 14 would be fixed in the chair conformation by the trans-decalin-like bicyclic system and would therefore afford better axial-methyl selectivity than the monocyclic system 17 during catalytic hydrogenation. The hydrogenation of 14 , however, showed low diastereoselectivity when using $\mathrm{Pd}(\mathrm{OH})_{2}$ or $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$. Thus, we decided to examine hydroxyl-directed hydrogenation of the exocyclic double bond with a cationic iridium catalyst. The hydroxyldirected hydrogenation of olefinic alcohols 15 and 16 using Crabtree's catalyst, ${ }^{23}\left[\operatorname{Ir}(\operatorname{cod})\left(\mathrm{PCy}_{3}\right)(\mathrm{py})\right] \mathrm{PF}_{6}$ ( 0.06 equiv), afforded the desired product 21 with good diastereoselectivity but moderate yield (Table 1, entry 1). This was due to the partial isomerization of the exo double bond to the endo position. Fortunately, increasing the amount of catalyst improved both the yield and diastereoselectivity of product

Table 1. Hydroxy-Directed Hydrogenation of 15 and 16 by Crabtree's Catalyst

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| entry |  | $\left[\operatorname{Ir}(\mathrm{cod})\left(\mathrm{PCy}_{3}\right)(\mathrm{py})\right] \mathrm{PF}_{6}$ (equiv) | temp | time (h) | yield (\%) | dr |
| 1 | $15 \mathrm{R}=\mathrm{H}$ | 0.06 | rt | 23 | 52 | 83:17 |
| 2 | $15 \mathrm{R}=\mathrm{H}$ | 0.1 | rt | 64 | 62 | 89:11 |
| 3 | $15 \mathrm{R}=\mathrm{H}$ | 0.5 | rt | 1 | 84 | 94:6 ${ }^{\text {a }}$ |
| 4 | $15 \mathrm{R}=\mathrm{H}$ | 0.5 | $0{ }^{\circ} \mathrm{C}$ | 1.5 | 78 | 89:11 |
| 5 | $16 \mathrm{R}=\mathrm{TBS}$ | 0.5 | rt | 23 | $70^{\text {b }}$ | 90:10 ${ }^{\text {b }}$ |

${ }^{a}$ A single diastereomer was obtained after recrystallization in $66 \%$ overall yield from $15 .{ }^{b}$ Yield and dr were determined after deprotection of the TBS group with $p$ - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

21 (entry 2); 0.5 equiv of the catalyst gave the highest yield and diastereoselectivity (entry 3). Diastereomerically pure 21 was obtained after recrystallization from toluene-hexane. The yield and diastereoselectivity were not improved by either cooling the reaction to $0{ }^{\circ} \mathrm{C}$ (entry 4) or using alcohol 16 instead of diol 15 (entry 5).

With the catalytic hydrogenation of $\mathbf{1 5}$ at a satisfactory level of efficiency, we proceeded to explore the introduction of the acetamide side chain. The majority of prior work in this area involved an acetylation of a primary amino group, which was prepared by the Curtius rearrangement or the reduction of azido or nitro groups. We envisaged that the nucleophilic substitution of the primary alcohol by an acetamide nucleophile would offer a more direct way to introduce an acetamide side chain. The Mitsunobu reaction is the most straightforward method for this purpose, but typically suffers from regioselective N - and O-alkylation because of its ambient anionic nature. ${ }^{24}$ Therefore, the N -alkylation reaction of model alkyl triflate 22 with acetamide (23a) was initially examined. Unfortunately, reaction with 23a mediated by NaH in DMF under conditions previously reported for alkyl mesylates ${ }^{25}$ gave the N -alkylated product only in poor yield. As well, the alkylation reaction did not proceed in THF because of the very low solubility of sodium and potassium salts derived from 23a (Table 2, entry 1 ). We subsequently investigated the use of N protected acetamide nucleophiles. When using $N$-methoxyacetamide (23b), the desired N -alkylated product 24 b was obtained in $49 \%$ yield, in addition to the O-alkylated imidate

Table 2. N-Alkylation of Acetamide Nucleophiles

|  |  | $\rightarrow$ | OTBS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| entry | PG | $\begin{gathered} 18-\mathrm{c}-6 \\ (\mathrm{eq}) \end{gathered}$ | time <br> (h) | N -alkylated product (\%) | O-alkylated product (\%) |
| 1 | H 23a | 2.0 | 1 | 0 | 0 |
| 2 | OMe 23b | 2.0 | 1 | 49 (24b) | 29 (25b) |
| 3 | Ac 23c | 2.0 | 1 | 70 (24c) | $24(25 c 6+2618)$ |
| 4 | Boc 23d | 2.0 | 0.5 | 90 (24d) | - ${ }^{\text {a }}$ |
| 5 | Cbz 23e | 2.0 | 1.5 | 89 (24e) | 7 (25e) |
| 6 | Cbz 23e | 0.2 | 22 | 23 (24e) | - |
| 7 | Cbz 23e | - | 16 | 8 (24e) | - |

[^1]$\mathbf{2 5 b}$ in $29 \%$ yield (entry 2). Diacetamide (23c) was found to be a better nucleophile than 23b, affording 24c in $70 \%$ yield, although still generating a significant amount of the undesired O-alkylated products 25 c and 26 (entry 3 ). We also investigated the N -alkylation of acetamides protected with carbamates ${ }^{26}$ that can be easily removed under mild reaction conditions. It was gratifying to observe that the reactions of N ( $t$-butoxycarbonyl) and $N$-(benzyloxycarbonyl)acetamides 23d and 23e proceeded with good regioselectivity to afford the N alkylated products 24 d and 24 e , respectively, in satisfactory yields, along with a small amount of the O-alkylated products (entries 4 and 5). When reducing the amount of 18 -crown- 6 to a catalytic level or in the absence of the crown ether, a significant decrease in the reaction rate was observed and the yields of 24 e dropped drastically (entries 6 and 7 ).

Having established an efficient method for the N -alkylation of the acetamide, we turned our attention to the synthesis of brevisamide. The diol 21 was converted to triflate 4 in a onepot triflation-TBS protection procedure (Scheme 4). The Nalkylation of 23 e with 4 was carried out under the optimized conditions described above (Table 2, entry 5) to afford the desired product 27 in $90 \%$ yield. Simultaneous removal of the Cbz and benzyl groups was effected via hydrogenation catalyzed by $\mathrm{Pd}(\mathrm{OH})_{2}$ to give alcohol 28, which was oxidized with Dess-Martin periodinane to afford the Lindsley's aldehyde 3. ${ }^{14}$ The total synthesis was accomplished by employing Lindsley's final four-step sequence. The Horner-Wadsworth-Emmons olefination of 3 with phosphonate 2 provided dienoate 29 with complete E-selectivity, and the DIBAL reduction of 29 followed by removal of the TBS protecting group afforded diol 31. Finally, the selective oxidation of the allylic alcohol moiety of the diol with $\mathrm{MnO}_{2}$ completed the synthesis of brevisamide (1).

## CONCLUSION

A total synthesis of brevisamide (1) has been achieved in 18 steps with a $5.9 \%$ overall yield starting from 4-(benzyloxy)butanol. The highlights of the present synthesis include successful oxiranyl anion coupling, cycloetherification of a hydroxy bromoketone, and hydroxyl-directed stereoselective hydrogenation of an exocyclic methylene group using Crabtree's catalyst to construct the tetrasubstituted tetrahydropyran core. In the latter stage of the synthesis, a new straightforward method for the preparation of N -alkyl acetamides was developed by the N -alkylation of N (benzyloxy)acetamide as an acetamide nucleophile with a triflate.

Scheme 4. Total Synthesis of Brevisamide


## EXPERIMENTAL SECTION

General Methods. All air- and moisture-sensitive reactions were carried out under an argon atmosphere in dry, freshly distilled solvents under anhydrous conditions. The term "dried" refers to the drying of an organic solution over $\mathrm{MgSO}_{4}$ followed by filtration. Flash chromatography was carried out with silica gel (spherical, neutral, particle size $40-50 \mu \mathrm{~m}$ ). Melting points are uncorrected. Chemical shifts are reported in ppm relative to internal TMS ( $\delta 0.00 \mathrm{ppm}$ ) or to the solvent signals $\delta 3.31 \mathrm{ppm}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ for ${ }^{1} \mathrm{H}$ NMR spectra, and to the solvent signals $\delta 77.0 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$ or $\delta 49.0 \mathrm{ppm}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ for ${ }^{13} \mathrm{C}$ NMR spectra. Data are reported as follows: chemical shift, integration, multiplicity ( $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad). The high-resolution mass spectra were recorded on a magnetic sector FAB or EI mass spectrometer. FTIR spectra were measured in $\mathrm{CHCl}_{3}$ solution.

4-(Benzyloxy)butanal (9). To a solution of 4-(benzyloxy)butanol (8) $(6.00 \mathrm{~g}, 33.3 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(210 \mathrm{~mL})$, DMSO $(70 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(70 \mathrm{~mL})$ was added $\mathrm{SO}_{3}$-pyridine complex ( $19.0 \mathrm{~g}, 120 \mathrm{mmol}$ ). The reaction mixture was stirred at room temperature for 1 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried, and concentrated under reduced pressure. Flash chromatography ( $20 \%$ EtOAc in hexane) afforded 4-(benzyloxy)butanal (9) ( $5.55 \mathrm{~g}, 94 \%$ ) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.78(1 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz})$, $7.36-7.26(5 \mathrm{H}, \mathrm{m}), 4.48(2 \mathrm{H}, \mathrm{s}), 3.51(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 2.54(2 \mathrm{H}$, $\mathrm{td}, J=7.1,1.6 \mathrm{~Hz}), 1.95(2 \mathrm{H}, \mathrm{tt}, J=7.1,6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 125 MHz ) $\delta 202.2,138.2,128.3,127.6$ (x2), 72.9, 69.1, 40.9, 22.5. Spectroscopic data were identical with those reported. ${ }^{14}$
(E)-p-Tolyl 5-(benzyloxy)pent-1-en-1-yl sulfone (10). To a solution of aldehyde 9 ( $1.22,6.88 \mathrm{mmol}$ ), diethyl ( $p$-toluenesulfonyl)methylphosphonate ( $3.16 \mathrm{~g}, 10.3 \mathrm{mmol}$ ), and $\mathrm{LiCl}(346 \mathrm{mg}, 8.25$ $\mathrm{mmol})$ in $\mathrm{MeCN}(41 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.15 \mathrm{~mL}, 8.25 \mathrm{mmol})$, and the reaction mixture was stirred at room temperature for 18 h . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The reaction mixture was extracted with EtOAc, and the extract was
washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $30 \% \mathrm{EtOAc}$ in hexane) afforded vinyl sulfone $10(2.22 \mathrm{~g}, 98 \%)$ as a colorless oil. IR $\left(\mathrm{CHCl}_{3}\right) 3060,3031,2924,2860,1634,1319,1304,1288,1148$, $1088 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.74(2 \mathrm{H}, \mathrm{m}), 7.35-7.25$ $(7 \mathrm{H}, \mathrm{m}), 6.96(1 \mathrm{H}, \mathrm{dt}, J=15.0,6.9 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{dt}, J=15.0,1.6$ $\mathrm{Hz}), 4.45(2 \mathrm{H}, \mathrm{s}), 3.45(\mathrm{t}, J=6.1 \mathrm{~Hz}), 2.42(3 \mathrm{H}, \mathrm{s}), 2.34(2 \mathrm{H}, \mathrm{tdd}, J=$ $7.3,6.9,1.6 \mathrm{~Hz}), 1.76(2 \mathrm{H}, \mathrm{tt}, J=7.3,6.1 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta$ 145.8, 144.1, 138.2, 137.7, 131.0, 129.8, 128.4, 127.59, 127.56 (x2), 72.9, 68.8, 28.2, 27.8, 21.5; HRFABMS $m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{SNa}\left(\mathrm{MNa}^{+}\right)$353.1187, found 353.1189 .

2-(3-(Benzyloxy)propyl)-3-(p-toluenesulfonyl)oxirane (6). То а solution of $t$-BuOK ( $494 \mathrm{mg}, 4.40 \mathrm{mmol}$ ) in THF ( 200 mL ) at -80 ${ }^{\circ} \mathrm{C}$ were added $t-\mathrm{BuOOH}(5.61 \mathrm{~mL}$ of a 5.5 M solution in nonane, $30.8 \mathrm{mmol})$ and a solution of vinyl sulfone $10(7.27 \mathrm{~g}, 22.0 \mathrm{mmol})$ in THF ( 20 mL ). The reaction mixture was stirred at $-80^{\circ} \mathrm{C}$ for 15 min , warmed to room temperature, and stirred for 1 h . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The reaction mixture was extracted with EtOAc, and the extract was washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $30 \% \mathrm{EtOAc}$ in hexane) afforded epoxy sulfone $6(6.04 \mathrm{~g}, 79 \%)$ as a colorless oil. This purification must be carried out quickly to avoid decomposition of the product on silica gel. IR $\left(\mathrm{CHCl}_{3}\right) 3029,3011,2927,2863,1598,1328,1154,1090$ $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.79(2 \mathrm{H}, \mathrm{m}), 7.38-7.26(7 \mathrm{H}$, m), $4.49(2 \mathrm{H}, \mathrm{s}), 3.87(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{td}, J=5.5,1.7$ $\mathrm{Hz}), 3.54-3.47(2 \mathrm{H}, \mathrm{m}), 2.45(3 \mathrm{H}, \mathrm{s}), 1.83(1 \mathrm{H}, \mathrm{m}), 1.79-1.67(3 \mathrm{H}$, $\mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 145.5,138.2,134.0,130.0,128.7$, 128.4, 127.60, 127.59, 72.9, 68.9, 68.4, 57.6, 27.2, 25.7, 21.7; HRFABMS $m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{SNa}\left(\mathrm{MNa}^{+}\right) 369.1136$, found 369.1122.

Coupling Product 11. To a solution of triflate $7^{22}(5.81 \mathrm{~g}, 11.4$ mmol ) and epoxy sulfone $6(5.95 \mathrm{~g}, 17.2 \mathrm{mmol})$ in THF ( 57 mL ) and HMPA ( $5.97 \mathrm{~mL}, 34.3 \mathrm{mmol}$ ) at $-100^{\circ} \mathrm{C}$ was added $n$-BuLi ( 11.1 mL of a 1.55 M solution in hexane, 17.2 mmol ), and the reaction mixture was stirred at $-100^{\circ} \mathrm{C}$ for 50 min . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The reaction mixture was extracted with EtOAc, and the extract was washed with water and brine, dried, and concentrated under reduced pressure. Flash chromatography ( $10 \%$ EtOAc in hexane) afforded coupling product 11 ( $6.75 \mathrm{~g}, 84 \%$, dr $=50: 50)$ as a colorless oil. $[\alpha]^{29}{ }_{\mathrm{D}}-5.8\left(c 0.75, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 2959, 2935, 2878, 2861, 1473, 1322, 1149, $1101 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.81-7.77(2 \mathrm{H}, \mathrm{m}), 7.38-7.27(7 \mathrm{H}, \mathrm{m}), 4.56$ $(0.5 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{s}), 4.48(1 \mathrm{H}, \mathrm{s}), 3.99(0.5 \mathrm{H}, \mathrm{dd}, J=$ $10.3,4.8 \mathrm{~Hz}), 3.90(0.5 \mathrm{H}, \mathrm{dd}, J=10.3,3.9 \mathrm{~Hz}), 3.90(0.5 \mathrm{H}, \mathrm{dd}, J=$ $10.0,2.8 \mathrm{~Hz}), 3.77(0.5 \mathrm{H}, \mathrm{t}, J=10.3 \mathrm{~Hz}), 3.74(0.5 \mathrm{H}, \mathrm{dd}, J=7.6,4.6$ $\mathrm{Hz}), 3.46-3.58(2 \mathrm{H}, \mathrm{m}), 3.43(0.5 \mathrm{H}, \mathrm{t}, J=10.2 \mathrm{~Hz}), 3.41(0.5 \mathrm{H}, \mathrm{t}, J=$ $9.1 \mathrm{~Hz}), 3.35(0.5 \mathrm{H}, \mathrm{td}, J=9.5,4.8 \mathrm{~Hz}), 3.30(0.5 \mathrm{H}, \mathrm{td}, J=9.2,4.7$ $\mathrm{Hz}), 3.00(0.5 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 2.56(0.5 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 2.43$ ( $3 \mathrm{H}, \mathrm{s}$ ), 2.10 ( $0.5 \mathrm{H}, \mathrm{dddd}, J=14.7,8.0,6.7,2.5 \mathrm{~Hz}$ ), 1.77-1.91 ( 2.5 H , m), $1.73(0.5 \mathrm{H}, \mathrm{dd}, J=15.5,9.7 \mathrm{~Hz}), 1.68(0.5 \mathrm{H}, \mathrm{m}), 1.54(0.5 \mathrm{H}, \mathrm{m})$, $1.52(0.5 \mathrm{H}, \mathrm{dd}, J=15.0,11.1 \mathrm{~Hz}), 1.07(4.5 \mathrm{H}, \mathrm{s}), 0.98(4.5 \mathrm{H}, \mathrm{t}, J=7.9$ $\mathrm{Hz}), 0.91(4.5 \mathrm{H}, \mathrm{s}), 0.89(4.5 \mathrm{H}, \mathrm{s}), 0.87(4.5 \mathrm{H}, \mathrm{s}), 0.86(4.5 \mathrm{H}, \mathrm{t}, J=$ $8.0 \mathrm{~Hz}), 0.63(3 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}), 0.50(3 \mathrm{H}, \mathrm{q}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 145.02,144.97,138.4,138.3,133.7,132.9,129.8$, 129.7, 129.6, 129.5, 128.4, 128.3, 127.6, 127.53 (x2), 127.49, 75.6, $75.2,75.0,73.8,73.0,72.9,71.3,70.8,69.5,69.30,69.25,69.1,61.0$, 59.9, 32.7, 28.9, 27.4, 27.2, 27.1, 27.0, 26.9, 26.4, 26.2, 24.4, 22.6, 22.5, 21.62, 21.61, 19.70, 19.66, 6.8, 6.7, 5.0, 4.9; HRFABMS $m / z$ calcd for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{O}_{7} \mathrm{SSi}_{2} \mathrm{Na}\left(\mathrm{MNa}^{+}\right) 727.3496$, found 727.3503.

Epoxy Alcohol 12. To a solution of TES ether 11 ( $6.72 \mathrm{~g}, 9.54$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(48 \mathrm{~mL})$ and $\mathrm{MeOH}(48 \mathrm{~mL})$ was added $p$-TsOH$\mathrm{H}_{2} \mathrm{O}(91 \mathrm{mg}, 0.48 \mathrm{mmol})$, and the reaction mixture was stirred at room temperature for 19 h . The reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ (2 mL ), and the reaction mixture was concentrated under reduced pressure. Purification by flash chromatography ( $8 \% \mathrm{EtOAc}$ in hexane) afforded $12(5.35 \mathrm{~g}, 95 \%, \mathrm{dr}=50: 50)$ as a colorless oil. $[\alpha]^{25}{ }_{\mathrm{D}}-8.7(c$ $1.00, \mathrm{CHCl}_{3}$ ); IR ( $\mathrm{CHCl}_{3}$ ) 3503, 2934, 2861, 1473, 1147, $1078 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.81-7.78(2 \mathrm{H}, \mathrm{m}), 7.35-7.25(7 \mathrm{H}$, $\mathrm{m}), 4.475(1 \mathrm{H}, \mathrm{s}), 4.465(1 \mathrm{H}, \mathrm{s}), 4.38(0.5 \mathrm{H}, \mathrm{ddd}, J=9.4,8.5,2.3 \mathrm{~Hz})$,
$4.07(0.5 \mathrm{H}, \mathrm{dd}, J=10.5,4.8 \mathrm{~Hz}), 4.01(0.5 \mathrm{H}, \mathrm{dd}, J=10.7,4.7 \mathrm{~Hz})$, 3.93 ( 0.5 H , ddd, $J=9.3,6.7,4.1 \mathrm{~Hz}$ ), $3.82(0.5 \mathrm{H}, \mathrm{dd}, J=8.9,3.4 \mathrm{~Hz})$, $3.73(0.5 \mathrm{H}, \mathrm{t}, J=10.4 \mathrm{~Hz}), 3.60(0.5 \mathrm{H}, \mathrm{t}, J=10.5 \mathrm{~Hz}), 3.59(0.5 \mathrm{H}, \mathrm{dd}$, $J=6.9 \mathrm{~Hz}, 5.0 \mathrm{~Hz}), 3.55-3.46(2 \mathrm{H}, \mathrm{m}), 3.41(0.5 \mathrm{H}, \mathrm{td}, J=10.1,4.8$ $\mathrm{Hz}), 3.37(0.5 \mathrm{H}, \mathrm{td}, J=9.9,4.6 \mathrm{~Hz}), 2.69(0.5 \mathrm{H}, \mathrm{dd}, J=15.7,2.2 \mathrm{~Hz})$, $2.64(0.5 \mathrm{H}, \mathrm{dd}, J=15.8,4.1 \mathrm{~Hz}), 2.45(1.5 \mathrm{H}, \mathrm{s}), 2.44(1.5 \mathrm{H}, \mathrm{s}), 2.19$ $(1 \mathrm{H}, \mathrm{brs}), 2.06(0.5 \mathrm{H}, \mathrm{dtd}, J=14.7,7.8,3.7 \mathrm{~Hz}), 2.00(0.5 \mathrm{H}, \mathrm{dd}, J=$ $15.7,6.8 \mathrm{~Hz}), 1.93-1.73(3 \mathrm{H}, \mathrm{m}), 1.72-1.60(1 \mathrm{H}, \mathrm{m}), 1.03(4.5 \mathrm{H}, \mathrm{s})$, $0.98(4.5 \mathrm{H}, \mathrm{s}), 0.92(4.5 \mathrm{H}, \mathrm{s}), 0.90(4.5 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 145.5,145.4,138.2,138.1,132.4,132.3,129.8$ (x3), 129.7, 128.4, 128.3, 127.7 (x2), 127.62, 127.58, 75.2, 75.1, 74.8, 74.3, 73.0 (x2), 70.4, 70.1, 69.4, 69.2, 68.9, 68.7, 61.3, 60.6, 33.1, 31.2, 27.4, 27.3, 27.0 (x2), 26.7, 26.3, 25.9, 24.4, 22.6, 22.5, 21.7 (x2), 19.74, 19.71; HRFABMS $m / z$ calcd for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{SSiNa}\left(\mathrm{MNa}^{+}\right)$613.2631, found 613.2622.

Bromoketone 13. To a solution of $12(1.45 \mathrm{~g}, 2.46 \mathrm{mmol}, \mathrm{dr}=$ 50:50) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{LiBr}(427 \mathrm{mg}, 4.92$ $\mathrm{mmol})$ and $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}(1.27 \mathrm{~g}, 4.92 \mathrm{mmol})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h , before the reaction was quenched with a saturated aqueous $\mathrm{NaHCO}_{3}$ solution. The resulting mixture was extracted with EtOAc , and the extract was washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $25 \% \mathrm{EtOAc}$ in hexane) afforded bromoketone $13(1.07 \mathrm{~g}, 85 \%, \mathrm{dr}=55: 45)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{25}-27.0$ (c 1.00, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR for the major isomer $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.39-$ $7.27(5 \mathrm{H}, \mathrm{m}), 4.48$ and 4.47 (each $1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{dd}, J$ $=8.0,6.4 \mathrm{~Hz}), 4.32-4.25(1 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{dd}, J=10.5,4.8 \mathrm{~Hz})$, $3.75(1 \mathrm{H}, \mathrm{t}, J=10.4 \mathrm{~Hz}), 3.59-3.40(3 \mathrm{H}, \mathrm{m}), 3.02(1 \mathrm{H}, \mathrm{dd}, J=5.0$, $4.8 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{dd}, J=15.8,7.6 \mathrm{~Hz}), 2.28(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$, $2.24-2.16(1 \mathrm{H}, \mathrm{m}), 2.08-1.96(1 \mathrm{H}, \mathrm{m}), 1.87-1.76(1 \mathrm{H}, \mathrm{m}), 1.73-$ $1.64(1 \mathrm{H}, \mathrm{m}), 1.02(9 \mathrm{H}, \mathrm{s}), 0.94(9 \mathrm{H}, \mathrm{s}) ;{ }^{1} \mathrm{H}$ NMR for the minor isomer $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.39-7.27(5 \mathrm{H}, \mathrm{m}), 4.48(2 \mathrm{H}, \mathrm{s}), 4.40$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0,6.4 \mathrm{~Hz}), 4.32-4.25(1 \mathrm{H}, \mathrm{m}), 4.06(1 \mathrm{H}, \mathrm{dd}, J=10.5$, $4.8 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{t}, J=10.4 \mathrm{~Hz}), 3.59-3.40(3 \mathrm{H}, \mathrm{m}), 3.02(1 \mathrm{H}, \mathrm{dd}, J$ $=5.0,4.8 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{dd}, J=16.9,6.9 \mathrm{~Hz}), 2.24-2.16(1 \mathrm{H}, \mathrm{m})$, $2.12(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 2.08-1.96(1 \mathrm{H}, \mathrm{m}), 1.87-1.76(1 \mathrm{H}, \mathrm{m})$, $1.73-1.64(1 \mathrm{H}, \mathrm{m}), 1.01(9 \mathrm{H}, \mathrm{s}), 0.97(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 202.8,202.2,138.2,138.1,128.45,128.39,127.78,127.75$ (x2), 127.6, 76.0, 75.4, 73.1, 72.9, 70.4, 70.3, 69.7, 69.3, 68.7 (x2), 54.8, 54.2, 45.32, 45.29, 30.4, 29.9, 27.6, 27.39, 27.38, 27.3, 26.99, 26.97, 22.6 (x2), 19.85, 19.82; HRFABMS $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{BrO}_{5} \mathrm{SiNa}$ $\left(\mathrm{MNa}^{+}\right) 537.1648$, found 537.1659.

Ketone 5. To a solution of bromoketone $13(3.50 \mathrm{~g}, 6.79 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(68 \mathrm{~mL})$ was added $\mathrm{DBU}(1.05 \mathrm{~mL}, 7.47 \mathrm{mmol})$ at room temperature, and the reaction mixture was stirred for 50 min . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted with EtOAc. The extract was washed with brine, dried, and concentrated under reduced pressure. Purification by flash chromatography $\left(0 \rightarrow 4 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in benzene) afforded ketone 5 ( $2.25 \mathrm{~g}, 76 \%$ ) and epi-5 ( $429 \mathrm{mg}, 14 \%$ ). Epi-5 was isomerized under the same reaction condition to afford additional $5(191 \mathrm{mg}, 6 \%)$. The total yield was $2.44 \mathrm{~g}(82 \%)$. Colorless oil. $[\alpha]_{\mathrm{D}}^{20}-8.3$ (c 0.50, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2935,2861,1726,1473,1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.36-7.25(5 \mathrm{H}, \mathrm{m}), 4.483$ and 4.479 (each 1 H , d, $J=12.0 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{dd}, J=10.2,5.1 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{ddd}, J=$ $11.1,9.4,5.7 \mathrm{~Hz}), 3.87(1 \mathrm{H}, \mathrm{t}, J=10.3 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{dd}, J=7.5,4.1$ $\mathrm{Hz}), 3.57(1 \mathrm{H}$, ddd, $J=10.2,9.4,5.1 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{dt}, J=9.4,6.2$ $\mathrm{Hz}), 3.46(1 \mathrm{H}, \mathrm{dt}, J=9.4,6.2 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{dd}, J=15.6,5.7 \mathrm{~Hz})$, $2.42(1 \mathrm{H}, \mathrm{dd}, J=15.4,11.2 \mathrm{~Hz}), 1.96(1 \mathrm{H}, \mathrm{m}), 1.77-1.57(3 \mathrm{H}, \mathrm{m})$, $1.04(9 \mathrm{H}, \mathrm{s}), 1.01(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 205.0$, $138.5,128.3,127.6,127.5,82.6,76.3,73.2,72.8,70.0,66.6,48.2,27.4$, 27.0, 25.9, 25.3, 22.6, 19.9. HRFABMS $m / z$ calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}$ $\left(\mathrm{MNa}^{+}\right) 457.2386$, found 457.2368 . The relative stereochemistry of 5 was determined by a difference NOE experiment as shown in Figure S1 in the Supporting Information.

Epi-5. Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}+53.2\left(c \quad 0.38, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 2935, 2861, 1724, 1473, $1107 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $7.37-7.25(5 \mathrm{H}, \mathrm{m}), 4.49$ and $4.40($ each $1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 4.18(1 \mathrm{H}$, dd, $J=10.3,5.0 \mathrm{~Hz}), 4.13(1 \mathrm{H}, \mathrm{ddd}, J=11.2,9.4,5.5 \mathrm{~Hz}), 3.97(1 \mathrm{H}$, $\mathrm{dd}, J=10.2,4.5 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{t}, J=10.2 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{td}, J=9.7$,
$5.0 \mathrm{~Hz}), 3.51(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{ddd}, J=16.3,5.5,0.9 \mathrm{~Hz})$, $2.49(1 \mathrm{H}, \mathrm{dd}, J=16.2,11.1 \mathrm{~Hz}), 1.94(1 \mathrm{H}, \mathrm{m}), 1.82-1.62(3 \mathrm{H}, \mathrm{m})$, $1.05(9 \mathrm{H}, \mathrm{s}), 1.00(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 207.6, 138.4, 128.4, 127.60, 127.68, 81.5, 72.9, 72.7, 69.3, 69.2, 67.0, 46.1, 27.4, 27.0, 26.0, 25.5, 22.6, 19.9; HRFABMS $m / z$ calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}\left(\mathrm{MNa}^{+}\right) 457.2386$, found 457.2380.

Exo-olefin 14. To a suspension of methyltriphenylphosphonium bromide ( $3.68 \mathrm{~g}, 10.3 \mathrm{mmol}$ ) in THF $(45 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $n$-BuLi ( 6.49 mL of a 1.55 M solution in hexane, 10.1 mmol ). The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred at the same temperature for 1 h . The resulting yellow suspension was recooled to $-78{ }^{\circ} \mathrm{C}$, and a solution of ketone $5(2.24 \mathrm{~g}, 5.16 \mathrm{mmol})$ in THF ( 5 mL ) was added. The reaction mixture was warmed to room temperature and stirred for 40 min . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted with EtOAc. The extract was washed with water and brine, dried, and concentrated under reduced pressure. Flash chromatography ( $5 \% \mathrm{EtOAc}$ in hexane) afforded exoolefin $14(2.06 \mathrm{~g}, 92 \%)$ as a colorless oil. $[\alpha]^{27}-36.6$ (c 0.92, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2935,2860,1473,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.37-7.30(4 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{m}), 4.89(1 \mathrm{H}, \mathrm{s}), 4.87$ $(1 \mathrm{H}, \mathrm{s}), 4.51$ and $4.50($ each $1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{dd}, J=$ $10.1,4.8 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{t}, J=10.3 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{ddd}, J=11.1,9.1$, $4.8 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}), 3.52(1 \mathrm{H}, \mathrm{dt}, J=9.4,6.2 \mathrm{~Hz})$, $3.48(1 \mathrm{H}, \mathrm{dt}, J=9.4,6.2 \mathrm{~Hz}), 3.39(1 \mathrm{H}, \mathrm{ddd}, J=10.2,9.3,5.0 \mathrm{~Hz})$, $2.76(1 \mathrm{H}, \mathrm{dd}, J=12.9,4.9 \mathrm{~Hz}), 2.22(1 \mathrm{H}, \mathrm{dd}, J=12.9,10.9 \mathrm{~Hz}), 1.92-$ $1.81(2 \mathrm{H}, \mathrm{m}), 1.69(1 \mathrm{H}, \mathrm{m}), 1.61(1 \mathrm{H}, \mathrm{m}), 1.03(9 \mathrm{H}, \mathrm{s}), 1.00(9 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 144.4,138.6,128.3,127.6,127.5$, 109.6, 78.0, 77.6, 75.0, 72.8, 70.1, 67.0, 42.8, 27.7, 27.5, 27.1, 26.0, 22.6, 19.9; HRFABMS $m / z$ calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNa}\left(\mathrm{MNa}^{+}\right)$ 455.2594, found 455.2588.

Diol 15. To a solution of silylene $14(2.06 \mathrm{~g}, 4.76 \mathrm{mmol})$ in THF $(48 \mathrm{~mL})$ was added $\mathrm{Bu}_{4} \mathrm{NF}(14.3 \mathrm{~mL}$ of a 1.0 M solution in THF, 14.3 mmol ), and the reaction mixture was stirred at room temperature for 1.5 h , before the reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The reaction mixture was extracted with EtOAc, and the extract was washed with brine, dried, and concentrated under reduced pressure. Purification by flash chromatography (70\% EtOAc in hexane) afforded diol 15 ( 1.39 g , quant.) as a colorless solid. Mp $39-41{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}-24.6$ (c 1.10, $\mathrm{CHCl}_{3}$ ); IR $\left(\mathrm{CHCl}_{3}\right) 3421,2931$, 2860, 1093, $1068 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.39-7.25$ $(5 \mathrm{H}, \mathrm{m}), 4.87(1 \mathrm{H}, \mathrm{s}), 4.85(1 \mathrm{H}, \mathrm{s}), 4.51(2 \mathrm{H}, \mathrm{s}), 3.81(1 \mathrm{H}, \mathrm{dd}, J=$ $11.5,3.8 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{dd}, J=11.5,4.9 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz})$, $3.61(1 \mathrm{H}, \mathrm{td}, J=9.7,5.2 \mathrm{~Hz}), 3.55-3.46(2 \mathrm{H}, \mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{ddd}, J=$ $9.0,4.9,3.8 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{br}$ s), $2.70(1 \mathrm{H}, \mathrm{dd}, J=12.9,5.1 \mathrm{~Hz}), 2.63$ $(1 \mathrm{H}, \mathrm{br}$ s), $2.20(1 \mathrm{H}, \mathrm{dd}, J=12.9,10.7 \mathrm{~Hz}), 1.93-1.80(2 \mathrm{H}, \mathrm{m})$, $1.78-1.57(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 144.2, 138.5, 128.4, 127.7, 127.6, 109.2, 81.3, 77.6, 72.8, 70.1, 68.7, 63.1, 42.0, 27.9, 25.9; HRFABMS $m / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{MNa}^{+}\right) 315.1572$, found 315.1578.

TBS Alcohol 16. To a solution of diol $15(18.1 \mathrm{mg}, 0.062 \mathrm{mmol})$ and imidazole ( $10.5 \mathrm{mg}, 0.155 \mathrm{mmol}$ ) in DMF ( 1 mL ) was added TBSCl $(14.0 \mathrm{mg}, 0.093 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with a saturated aqueous $\mathrm{NaHCO}_{3}$ solution, and the reaction mixture was extracted with EtOAc. The extract was washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $60 \%$ EtOAc in hexane) afforded TBS alcohol $16(18.5 \mathrm{mg}$, $73 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{29}-25.1\left(c 1.54, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 3480, 2955, 2930, 2859, 1257, $1084 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.31(4 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{m}), 4.88(1 \mathrm{H}, \mathrm{s}), 4.85(1 \mathrm{H}$, s), $4.51(2 \mathrm{H}, \mathrm{s}), 3.92(1 \mathrm{H}, \mathrm{dd}, J=9.9,4.8 \mathrm{~Hz}), 3.72-3.62(4 \mathrm{H}, \mathrm{m})$, $3.55-3.45(2 \mathrm{H}, \mathrm{m}), 3.33(1 \mathrm{H}, \mathrm{td}, J=8.5,4.9 \mathrm{~Hz}), 2.72(1 \mathrm{H}, \mathrm{dd}, J=$ $13.1,5.2 \mathrm{~Hz}), 2.21(1 \mathrm{H}, \mathrm{ddt}, J=12.8,10.9,2.1 \mathrm{~Hz}), 1.92-1.79(2 \mathrm{H}$, $\mathrm{m}), 1.76-1.55(3 \mathrm{H}, \mathrm{m}), 0.90(9 \mathrm{H}, \mathrm{s}), 0.10(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.3,138.7,128.4,127.6,127.5,109.0,78.9,77.5$, 72.8, 72.6, 70.2, 66.5, 41.2, 27.8, 26.0, 25.7, 18.0, -5.7, -5.8; HRFABMS $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$407.2618, found 407.2605 .

Hydrogenation of 14 Using $\mathrm{Pd}(\mathrm{OH})_{2}$. A mixture of olefin 14 $(5.4 \mathrm{mg}, 0.013 \mathrm{mmol}), 20 \% \mathrm{w} / \mathrm{w} \operatorname{Pd}(\mathrm{OH})_{2} / \mathrm{C}(10.6 \mathrm{mg})$, and EtOH
$(1 \mathrm{~mL})$ was stirred under a hydrogen atmosphere at room temperature for 1 h . The mixture was filtered through a Celite pad, and the filtrate was concentrated under reduced pressure. Purification by flash chromatography ( $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) afforded a $74: 26$ diastereomeric mixture of alcohol 19 ( $3.5 \mathrm{mg}, 81 \%$ ) as a colorless oil. The stereochemistry was determined by converting 19 to 20 by benzylation with BnBr and KHMDS in THF.

Hydrogenation of 14 Using $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$. A mixture of olefin 14 $(9.1 \mathrm{mg}, 0.021 \mathrm{mmol}), \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(9.2 \mathrm{mg}, 0.0099 \mathrm{mmol})$, and $\mathrm{EtOH}(1 \mathrm{~mL})$ was stirred under a hydrogen atmosphere at room temperature for 2 h . The mixture was concentrated under reduced pressure and purified by flash chromatography ( $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to afford a $54: 46$ diastereomeric mixture of $20(8.6 \mathrm{mg}, 94 \%)$. The major and minor diastereomers 20 and epi-20 were partially separated by flash chromatography (benzene) to provide analytical pure samples.

Desired Isomer 20. Colorless oil; $[\alpha]_{\mathrm{D}}^{27}-14.9\left(c 0.97, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2964,2934,2860,1473,1108,1087 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.36-7.31(4 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{m}), 4.50(2 \mathrm{H}, \mathrm{s}), 4.07$ $(1 \mathrm{H}, \mathrm{dd}, J=10.1,4.8 \mathrm{~Hz}), 3.91(1 \mathrm{H}, \mathrm{ddd}, J=11.1,9.3,4.6 \mathrm{~Hz}), 3.82$ $(1 \mathrm{H}, \mathrm{t}, J=10.2 \mathrm{~Hz}), 3.53-3.42(3 \mathrm{H}, \mathrm{m}), 3.24(1 \mathrm{H}, \mathrm{td}, J=9.8,4.9 \mathrm{~Hz})$, $1.98(1 \mathrm{H}, \mathrm{ddd}, J=12.6,4.6,2.3 \mathrm{~Hz}), 1.89(1 \mathrm{H}, \mathrm{qdt}, J=7.3,4.6,2.3$ $\mathrm{Hz}), 1.71(1 \mathrm{H}, \mathrm{m}), 1.66-1.56(2 \mathrm{H}, \mathrm{m}), 1.52(1 \mathrm{H}, \mathrm{dtd}, J=14.0,8.8$, $4.4 \mathrm{~Hz}), 1.42(1 \mathrm{H}, \mathrm{ddt}, J=13.5,10.5,5.2 \mathrm{~Hz}), 1.04(9 \mathrm{H}, \mathrm{s}), 0.98(9 \mathrm{H}$, s), $0.97(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.6$, 128.3, 127.6, 127.5, 80.1, 78.6, 72.9, 70.3, 70.2, 67.2, 40.1, 32.8, 29.2, 27.5, 27.1, 26.4, 22.6, 19.9, 12.8; HRFABMS $m / z$ calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{Si}$ $\left(\mathrm{MH}^{+}\right)$435.2931, found 435.2914.

Epimer epi-20. Colorless oil; $[\alpha]^{27}{ }_{\mathrm{D}}-25.1$ (c 0.68, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2962,2934,1473,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 7.36-7.32(4 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{m}), 4.50$ and $4.49($ each $1 \mathrm{H}, \mathrm{d}, J=$ $11.9 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{dd}, J=10.1,4.8 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{t}, J=10.2 \mathrm{~Hz})$, $3.74(1 \mathrm{H}, \mathrm{ddd}, J=10.9,9.2,4.5 \mathrm{~Hz}), 3.51-3.42(2 \mathrm{H}, \mathrm{m}), 3.21(1 \mathrm{H}$, ddd, $J=10.1,9.2,4.8 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{td}, J=9.3,2.1 \mathrm{~Hz}), 2.08(1 \mathrm{H}, \mathrm{dt}$, $J=12.5,4.2 \mathrm{~Hz}), 1.86-1.72(2 \mathrm{H}, \mathrm{m}), 1.63(1 \mathrm{H}, \mathrm{m}), 1.52(1 \mathrm{H}, \mathrm{ddqd}, J$ $=12.3,9.3,6.6,4.2 \mathrm{~Hz}), 1.34(1 \mathrm{H}, \operatorname{dtd}, J=14.0,8.8,4.4 \mathrm{~Hz}), 1.20$ $(1 \mathrm{H}, \mathrm{q}, J=11.9 \mathrm{~Hz}), 1.03(9 \mathrm{H}, \mathrm{s}), 0.99(9 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.6,128.3,127.6,127.5,83.0$, $77.5,73.8,72.8,70.3,67.2,41.7,35.2,29.2,27.5,27.1,25.6,22.6,19.9$, 17.6; HRFABMS $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 435.2931$, found 435.2915. The relative stereochemistry of 20 and epi-20 was determined by difference NOE experiments and coupling constants of ${ }^{1} \mathrm{H}$ NMR as shown in Figure S2 in the Supporting Information.

Determination of the Stereochemistry of Diol 21. To a solution of a 77:23 diastereomeric mixture of 20 and epi-20 ( $10 \mathrm{mg}, 0.023 \mathrm{mmol}$ ) in THF ( 1 mL ) was added 1.0 M solution of TBAF in THF ( 0.069 $\mathrm{mL}, 0.069 \mathrm{mmol}, 3.0$ equiv), and the reaction mixture was stirred at room temperature for 24 h . The mixture was concentrated under reduced pressure and purified by flash chromatography $(2 \% \mathrm{MeOH}$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ to provide diol $21(5.6 \mathrm{mg}, 83 \%)$ as a $77: 23$ diastereomeric mixture. ${ }^{1} \mathrm{H}$ NMR spectra of the major isomer was identical with the major product of the Crabtree hydrogenation of diol 15 (vide infra).

Diol 21. A mixture of exomethylene diol $15(545 \mathrm{mg}, 1.86 \mathrm{mmol})$ and $\left[\operatorname{Ir}(\operatorname{cod})\left(\mathrm{PCy}_{3}\right)(\mathrm{py})\right] \mathrm{PF}_{6}(750 \mathrm{mg}, 0.932 \mathrm{mmol}, 0.5$ equiv) in benzene ( 19 mL ) was stirred under a hydrogen atmosphere at room temperature for 1 h . The reaction mixture was filtered through a Celite pad and the filtrate was concentrated under reduced pressure. Purification by flash chromatography ( $40 \%$ acetone in hexane) afforded a 94:6 diastereomeric mixture of diol 21 ( $463 \mathrm{mg}, 84 \%$ ) as a colorless solid. The solid was further purified by recrystallization from $50 \%$ toluene in hexane to afford a single isomer $21(361 \mathrm{mg}, 66 \%$ overall) as colorless needles. $\mathrm{Mp} 70-71{ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}-2.9$ (c 1.05, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3390,2928,2858,1455,1101,1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.43-7.33(4 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{m}), 4.53$ $(2 \mathrm{H}, \mathrm{s}), 3.84(1 \mathrm{H}, \mathrm{ddd}, J=11.2,5.0,4.6 \mathrm{~Hz}), 3.72-3.80(2 \mathrm{H}, \mathrm{m}), 3.50$ $(1 \mathrm{H}, \mathrm{dt}, J=9.2,6.4 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{dt}, J=9.2,6.4 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{ddd}$, $J=8.0,5.0,2.2 \mathrm{~Hz}), 3.16(1 \mathrm{H}, \mathrm{dt}, J=9.3,4.6 \mathrm{~Hz}), 2.49(1 \mathrm{H}, \mathrm{t}, J=5.0$ $\mathrm{Hz}), 2.38(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 1.99(1 \mathrm{H}, \mathrm{ddd}, J=12.4,4.8,2.6 \mathrm{~Hz})$, $1.88(1 \mathrm{H}, \mathrm{qdt}, J=7.2,4.8,2.4 \mathrm{~Hz}), 1.76(1 \mathrm{H}, \mathrm{m}), 1.69-1.61(2 \mathrm{H}, \mathrm{m})$, $1.58(1 \mathrm{H}$, dddd, $J=13.0,10.1,8.1,5.1 \mathrm{~Hz}), 1.45(1 \mathrm{H}, \mathrm{ddt}, J=13.0$, $10.0,5.2,5.2 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150\right.$
$\mathrm{MHz}) \delta 138.5,128.3,127.6,127.5,82.0,79.6,72.9,70.2,63.9,63.5$, 40.1, 32.6, 29.3, 26.5, 12.5; HRFABMS $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{4}$ $\left(\mathrm{MH}^{+}\right)$295.1909, found 295.1905.
$N$-Methoxyacetamide (23b). To a mixture of O-methylhydroxylamine hydrochloride ( $1.00 \mathrm{~g}, 12.0 \mathrm{mmol}$ ) and $10 \%$ aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution $(24 \mathrm{~mL})$ was added acetic anhydride $(2.20 \mathrm{~mL}, 24.0 \mathrm{mmol})$, and the reaction mixture was stirred at room temperature for 5 h . The mixture was a saturated with NaCl and extracted with EtOAc five times. The extract was dried and concentrated under reduced pressure. Purification by Kugelrohr distillation (ca. $100{ }^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$ ) afforded $N$-methoxyacetamide (23b) ( $411 \mathrm{mg}, \mathbf{3 9 \%}$ ) as a colorless oil. A 74:26 mixture of rotamers; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ major rotamer: $\delta$ $9.27(1 \mathrm{H}, \mathrm{brs}), 3.77(3 \mathrm{H}, \mathrm{s}), 1.93(3 \mathrm{H}, \mathrm{s})$; minor rotamer: ( 600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.55(1 \mathrm{H}, \mathrm{brs}), 3.75(3 \mathrm{H}, \mathrm{s}), 2.13(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ( 150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) major rotamer: $\delta 168.1,64.3$, 19.7; minor rotamer (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.2, 64.9, 18.9. Spectroscopic data were identical with those reported. ${ }^{27}$
$N$-Boc-acetamide (23d). A mixture of $t$-butyl carbamate ( 1.00 g , 8.55 mmol ), 4-(dimethylamino)pyridine ( $104 \mathrm{mg}, 0.855 \mathrm{mmol}$ ), acetic anhydride $(4.0 \mathrm{~mL}, 43 \mathrm{mmol})$, and pyridine $(8.5 \mathrm{~mL})$ was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 7 h . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the resulting mixture was extracted with EtOAc. The extract was washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $60 \%$ $\mathrm{Et}_{2} \mathrm{O}$ in hexane) afforded N -Boc-acetamide (23d) $(627 \mathrm{mg}, 46 \%)$ as a colorless solid. $\mathrm{Mp} 80-81^{\circ} \mathrm{C}$ (lit. $79-80^{\circ} \mathrm{C}$ ); ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38(1 \mathrm{H}, \mathrm{brs}), 2.40(3 \mathrm{H}, \mathrm{s}), 1.50(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ( 125 $\left.\mathrm{MHz} \mathrm{CDCl}_{3}\right) \delta 172.2,150.6,82.5,28.0,23.9$. Spectroscopic data were identical with those reported. ${ }^{28}$

N -Cbz-acetamide (23e). A mixture of benzyl carbamate ( 3.00 g , $19.8 \mathrm{mmol})$, acetic anhydride ( 30 mL ) and Amberlyst $15(300 \mathrm{mg}$, dry weight) were stirred at room temperature for 1 h . The reaction mixture was filtered and concentrated under reduced pressure. Purification by recrystallization from toluene/hexane afforded $N$ -Cbz-acetamide (23e) (3.58 g, 94\%) as colorless needles. Mp 105-107 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(1 \mathrm{H}, \mathrm{br}$ s), $7.39-7.34(5 \mathrm{H}$, m), $5.18(2 \mathrm{H}, \mathrm{s}), 2.42(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1$, 151.8, 134.9, 128.7 (x2), 128.3, 67.8, 24.0. Spectroscopic data were identical with those reported. ${ }^{29}$

Alkylation with N-Methoxyacetamide (23b) (Table 2, entry 2). To a solution of $N$-methoxyacetamide (23b) ( $53 \mathrm{mg}, 0.60 \mathrm{mmol}$ ) and 18-crown-6 $(158 \mathrm{mg}, 0.60 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at room temperature was added a 0.5 M solution of KHMDS in toluene ( $0.90 \mathrm{~mL}, 0.45$ mmol ), and the mixture was stirred at room temperature for 30 min before cooling to $0^{\circ} \mathrm{C}$. A solution of triflate $\mathbf{2 2}^{20}(114 \mathrm{mg}, 0.301$ mmol ) in THF ( 1 mL ) was added at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 80 min . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the reaction mixture was extracted with EtOAc. The extract was washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $30 \% \mathrm{EtOAc}$ in hexane) afforded N-alkylated product 24b ( $47 \mathrm{mg}, 49 \%$ ) and O-alkylated product 25b ( $28 \mathrm{mg}, 29 \%$ ).

N-Alkylated Product 24b. Colorless oil; $[\alpha]^{28}{ }_{\mathrm{D}}+34.7$ (c 1.27, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2952,2935,2857,1674,1252,1126,1101,837$, $775 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 3.94-3.86(2 \mathrm{H}, \mathrm{m}), 3.77$ $(1 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}, \mathrm{s}), 3.41-3.34(2 \mathrm{H}, \mathrm{m}), 3.29(1 \mathrm{H}, \mathrm{td}, J=11.6,2.8$ $\mathrm{Hz}), 2.15(3 \mathrm{H}, \mathrm{s}), 2.02(1 \mathrm{H}, \mathrm{m}), 1.72-1.58(2 \mathrm{H}, \mathrm{m}), 1.45(1 \mathrm{H}, \mathrm{m})$, $0.90(9 \mathrm{H}, \mathrm{s}), 0.08(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 172.4$, 79.0, 69.7, 67.5, 61.5, 47.3, 33.4, 25.7, 25.3, 20.1, 17.9, -3.8, -4.9; HRFABMS $m / z$ calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$318.2101, found 318.2115 .

O-Alkylated Product 25b. Colorless oil; $[\alpha]^{28}{ }_{\mathrm{D}}+45.5$ (c 2.22, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2952,2937,2857,1649,1384,1302,1259,1096$, 1070, 887, 837, $777 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 4.33(1 \mathrm{H}$, dd, $J=11.0,1.8 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{dd}, J=11.0,6.4 \mathrm{~Hz}), 3.91(1 \mathrm{H}, \mathrm{ddt}, J$ $=11.6,4.5,1.5 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{ddd}, J=10.5,9.2,4.7 \mathrm{~Hz})$, $3.35(1 \mathrm{H}, \mathrm{td}, J=11.6,2.9 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{ddd}, J=9.2,6.4,1.8 \mathrm{~Hz})$, $2.03(1 \mathrm{H}$, ddtd, $J=12.8,4.7,3.3,1.5 \mathrm{~Hz}), 1.97(3 \mathrm{H}, \mathrm{s}), 1.73-1.60$ $(2 \mathrm{H}, \mathrm{m}), 1.45(1 \mathrm{H}, \mathrm{tdd}, J=12.8,10.5,4.6 \mathrm{~Hz}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.07(3 \mathrm{H}$,
s), $0.06(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ 154.1, 81.4, 68.9, 67.6, 67.3, 61.5, 33.3, 25.7, 25.2, 17.8, 15.1, -4.2, -5.1; HRFABMS m/ $z$ calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 318.2101$, found 318.2095.

Alkylation with Diacetamide (23c) (Table 2, entry 3). To a solution of diacetamide $(23 \mathrm{c})(53 \mathrm{mg}, 0.53 \mathrm{mmol})$ and 18 -crown-6 $(140 \mathrm{mg}, 0.53 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at room temperature was added a 0.5 M solution of KHMDS in toluene $(0.80 \mathrm{~mL}, 0.40 \mathrm{mmol})$, and the mixture was stirred at room temperature for 30 min before cooling to $0^{\circ} \mathrm{C}$. A solution of triflate $22(100 \mathrm{mg}, 0.265 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 80 min . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the reaction mixture was extracted with EtOAc. The extract was washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $5 \rightarrow 20 \% \mathrm{EtOAc}$ in hexane) afforded an inseparable 93:7 mixture of N -alkylated products 24 c and O -alkylated product 25c (65 $\mathrm{mg}, 75 \%)$ and 26 ( $12 \mathrm{mg}, 18 \%$ ).

The mixture of 24 c and 25 c was deacetylated to the corresponding amide 24a and alcohol 26 to determine product yields. A 93:7 mixture of 24 c and $25 \mathrm{c}(65 \mathrm{mg}, 0.20 \mathrm{mmol})$, $\mathrm{MeOH}(2 \mathrm{~mL})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(3$ $\mathrm{mg}, 0.02 \mathrm{mmol}$ ) was stirred at room temperature for $2.5 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}$ was removed by filtration and the filtrate was concentrated under reduced pressure. Purification by flash chromatography (80\% EtOAc in hexane) afforded amide 24 a ( $53 \mathrm{mg}, 70 \%$ from 22 ) and alcohol 26 ( $3.2 \mathrm{mg}, 7 \%$ from 22 ).

Amide 24a. Colorless amorphous solid; $[\alpha]_{\mathrm{D}}^{24}+54.8$ (c 1.15, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3473,2953,2930,2857,1652,1550,1252,1098$ $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.89(1 \mathrm{H}, \mathrm{ddt}, J$ $=11.2,4.0,1.6 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{dq}, J=10.2,6.5 \mathrm{~Hz}), 3.41-3.29(2 \mathrm{H}$, m), 3.17-3.06 $(2 \mathrm{H}, \mathrm{m}), 2.02(1 \mathrm{H}, \mathrm{m}), 1.98(3 \mathrm{H}, \mathrm{s}), 1.69-1.62(2 \mathrm{H}$, m), $1.44(1 \mathrm{H}, \mathrm{dtd}, J=12.8,10.5,7.7 \mathrm{~Hz}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s})$, $0.06(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,80.9,69.2,67.6$, 41.3, 33.2, 25.7, 25.4, 23.3, 17.9, -4.1, -4.9; HRFABMS $m / z$ calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 288.1995$, found 288.1984.

Alcohol 26. Colorless oil; $[\alpha]_{\mathrm{D}}^{25}+51.1$ (c $0.88, \mathrm{CHCl}_{3}$ ); IR $\left(\mathrm{CDCl}_{3}\right) 3291,2931,2857,1650,1550,1252,1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.92(1 \mathrm{H}, \mathrm{ddt}, J=11.3,3.9,1.9 \mathrm{~Hz}), 3.83(1 \mathrm{H}$, ddd, $J=11.1,5.6,2.9 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{dt}, J=11.1,5.3 \mathrm{~Hz}), 3.48(1 \mathrm{H}$, ddd, $J=10.7,9.0,4.7 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{m}), 3.15(1 \mathrm{H}, \mathrm{ddd}, J=9.0,6.0$, $3.1 \mathrm{~Hz}), 2.05-1.98(2 \mathrm{H}, \mathrm{m}), 1.70-1.63(2 \mathrm{H}, \mathrm{m}), 1.46(1 \mathrm{H}, \mathrm{m}), 0.88$ $(9 \mathrm{H}, \mathrm{s}), 0.07(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 82.3,67.9,67.6$, 63.2, 33.3, 25.7, 25.5, 17.9, $-4.1,-4.9$; Spectroscopic data were identical with those reported. ${ }^{30}$

Alkylation with $N$-Boc-acetamide (23d) (Table 2, entry 4). To a solution of N -Boc-acetamide (23d) $(79 \mathrm{mg}, 0.49 \mathrm{mmol})$ and 18-crown-6 $(130 \mathrm{mg}, 0.49 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at room temperature was added a 0.5 M solution of KHMDS in toluene $(0.74 \mathrm{~mL}, 0.37$ mmol ), and the mixture was stirred at room temperature for 30 min before cooling to $0^{\circ} \mathrm{C}$. A solution of triflate $22(93.4 \mathrm{mg}, 0.247 \mathrm{mmol})$ in THF ( 1 mL ) was added at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 30 min . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the reaction mixture was extracted with EtOAc. The extract was washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $10 \%$ EtOAc in hexane) afforded N -alkylated product 24d ( $85.8 \mathrm{mg}, 90 \%$ ).
$N$-Alkylated Product 24d. Colorless oil; $[\alpha]^{28}{ }_{\mathrm{D}}+20.1$ (c 1.04, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2953,2932,2857,1737,1698,1368,1350,1231$, $1154,1139,1101,837,775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.01$ $(1 \mathrm{H}, \mathrm{dd}, J=13.8,2.9 \mathrm{~Hz}), 3.91(1 \mathrm{H}, \mathrm{dd}, J=13.8,10.1 \mathrm{~Hz}), 3.82(1 \mathrm{H}$, ddt, $J=11.6,4.5,1.6 \mathrm{~Hz}), 3.35(1 \mathrm{H}$, ddd, $J=10.5,8.8,4.6 \mathrm{~Hz}), 3.26$ $(1 \mathrm{H}, \mathrm{ddd}, J=10.1,8.8,2.9 \mathrm{~Hz}), 3.18(1 \mathrm{H}, \mathrm{td}, J=11.6,2.6 \mathrm{~Hz}), 2.46$ $(3 \mathrm{H}, \mathrm{s}), 1.98(1 \mathrm{H}$, ddtd, $J=12.8,4.9,3.3,1.6 \mathrm{~Hz}), 1.69-1.56(2 \mathrm{H}, \mathrm{m})$, $1.52(9 \mathrm{H}, \mathrm{s}), 1.42(1 \mathrm{H}, \mathrm{tdd}, J=12.8,10.5,4.6 \mathrm{~Hz}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.073$ $(3 \mathrm{H}, \mathrm{s}), 0.065(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.1,153.7$, 82.6, 80.4, 70.5, 67.5, 45.9, 33.4, 28.0, 26.6, 25.7, 25.4, 17.9, -4.0, -4.8; HRFABMS $m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 388.2519$, found 388.2520 .

Alkylation with N-Cbz-acetamide (23e) (Table 2, entry 5). To a solution of N -Cbz-acetamide (23e) $(102 \mathrm{mg}, 0.53 \mathrm{mmol})$ and 18 -
crown-6 $(140 \mathrm{mg}, 0.53 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at room temperature was added a 0.5 M solution of KHMDS in toluene ( $0.80 \mathrm{~mL}, 0.40$ mmol ), and the mixture was stirred at room temperature for 30 min before cooling to $0^{\circ} \mathrm{C}$. A solution of triflate $22(100 \mathrm{mg}, 0.265 \mathrm{mmol})$ in THF ( 1 mL ) was added at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 1.5 h . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the reaction mixture was extracted with EtOAc. The extract was washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $20 \% \mathrm{EtOAc}$ in hexane) afforded N -alkylated product 24e ( $99 \mathrm{mg}, 89 \%$ ) and O-alkylated product 25 e ( $7.6 \mathrm{mg}, 7 \%$ ).
$N$-Alkylated Product 24e. Colorless oil; $[\alpha]^{29}{ }_{\mathrm{D}}+52.6$ (c 0.49 , $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2952,2930,2856,1738,1704,1338,1213,1143$, $1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.45-7.50(2 \mathrm{H}, \mathrm{m}), 7.40-$ $7.32(3 \mathrm{H}, \mathrm{m}), 5.24(2 \mathrm{H}, \mathrm{s}), 4.09(1 \mathrm{H}, \mathrm{dd}, J=13.8,2.8 \mathrm{~Hz}), 3.99(1 \mathrm{H}$, dd, $J=13.8,10.1 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{ddt}, J=11.3,4.5,1.5 \mathrm{~Hz}), 3.34(1 \mathrm{H}$, ddd, $J=10.4,8.9,4.6 \mathrm{~Hz}), 3.25(1 \mathrm{H}$, ddd, $J=10.1,8.9,2.8 \mathrm{~Hz}), 3.12$ $(1 \mathrm{H}, \mathrm{td}, J=11.6,2.6 \mathrm{~Hz}), 2.50(3 \mathrm{H}, \mathrm{s}), 1.97(1 \mathrm{H}, \mathrm{ddtd}, J=12.8,4.7$, $3.3,1.5 \mathrm{~Hz}), 1.68-1.54(2 \mathrm{H}, \mathrm{m}), 1.39(1 \mathrm{H}, \mathrm{tdd}, J=12.9,10.5,4.5 \mathrm{~Hz})$, $0.87(9 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.05(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ $\delta 173.0,155.0,135.4,128.5,128.4,128.3,80.3,70.4,68.2,67.5,45.8$, 33.4, 26.6, 25.7, 25.3, 17.9, $-3.9,-4.9$; HRFABMS $m / z$ calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 422.2363$, found 422.2368 .

O-Alkylated Product 25e. Colorless oil; $[\alpha]_{\mathrm{D}}^{29}+38.1$ (c 0.58 , $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 2952, 2930, 2856, 1717, 1671, $1227 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.34(4 \mathrm{H}, \mathrm{m}), 7.32(1 \mathrm{H}, \mathrm{m}), 5.18$ $(2 \mathrm{H}, \mathrm{s}), 4.35(1 \mathrm{H}, \mathrm{dd}, J=11.8,2.0 \mathrm{~Hz}), 4.19(1 \mathrm{H}, \mathrm{dd}, J=11.8,5.4$ $\mathrm{Hz}), 3.93(1 \mathrm{H}, \mathrm{ddt}, J=11.3,4.4,1.6 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{ddd}, J=10.6,9.2$, $4.8 \mathrm{~Hz}), 3.36(1 \mathrm{H}, \mathrm{td}, J=11.5,2.8 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{ddd}, J=9.2,5.4,2.0$ $\mathrm{Hz}), 2.09(3 \mathrm{H}, \mathrm{s}), 2.05(1 \mathrm{H}, \mathrm{ddtd}, J=12.8,4.7,3.3,1.6 \mathrm{~Hz}), 1.74-$ $1.62(2 \mathrm{H}, \mathrm{m}), 1.45(1 \mathrm{H}, \mathrm{tdd}, J=12.8,10.8,4.7 \mathrm{~Hz}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.05$ $(3 \mathrm{H}, \mathrm{s}), 0.03(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ 167.8, 161.3, 136.0, 128.5, 128.25, 128.21, 80.3, 68.00, 67.96, 67.1 (x2), 33.4, 25.7, 25.3, 18.4, 17.8, -4.0, -5.0; HRFABMS $m / z$ calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{Si}$ $\left(\mathrm{MH}^{+}\right) 422.2363$, found 422.2375. Alkylated positions of 24 e and 25 e were determined by HMBC experiments as shown in Figure S3 in the Supporting Information.

Triflate 4. To a solution of diol $21(178 \mathrm{mg}, 0.605 \mathrm{mmol})$ in 2,6 lutidine $(0.210 \mathrm{~mL}, 1.82 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $-80^{\circ} \mathrm{C}$ was added $\mathrm{Tf}_{2} \mathrm{O}(0.104 \mathrm{~mL}, 0.617 \mathrm{mmol})$, and the reaction mixture was stirred at $-80^{\circ} \mathrm{C}$ for 40 min . TBSOTf $(0.153 \mathrm{~mL}, 0.666 \mathrm{mmol})$ was then added, and the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 50 min . The reaction was quenched with a saturated aqueous $\mathrm{NaHCO}_{3}$ solution, and the reaction mixture was extracted with EtOAc. The extract was washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $10 \%$ EtOAc in hexane) afforded triflate $4(288 \mathrm{mg}$, $88 \%$ ) as a colorless oil. $[\alpha]_{\mathrm{D}}^{27}+26.2$ (c $\left.0.99, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 2953, 2931, 2858, 1415, 1206, 1146, 1106, $943 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.37-7.31(4 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{dd}$, $J=10.5,1.8 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{dd}, J=10.5,5.5 \mathrm{~Hz}), 4.50$ and 4.49 (each $1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{ddd}, J=11.0,9.4,4.8 \mathrm{~Hz}), 3.52(1 \mathrm{H}, \mathrm{dt}$, $J=9.4,6.1 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dt}, J=9.3,6.4 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{ddd}, J=8.4$, $4.6,2.2 \mathrm{~Hz}), 3.33(1 \mathrm{H}$, ddd, $J=9.3,5.5,1.9 \mathrm{~Hz}), 1.92(1 \mathrm{H}$, ddd, $J=$ $12.7,4.9,2.7 \mathrm{~Hz}), 1.84(1 \mathrm{H}, \mathrm{qdt}, J=7.2,4.7,2.4 \mathrm{~Hz}), 1.74(1 \mathrm{H}, \mathrm{m})$, $1.66-1.56(2 \mathrm{H}, \mathrm{m}), 1.55(1 \mathrm{H}$, dddd, $J=13.5,9.6,8.8,5.1 \mathrm{~Hz}), 1.44$ $(1 \mathrm{H}, \mathrm{ddt}, J=13.5,10.0,5.0 \mathrm{~Hz}), 0.95(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 0.87(9 \mathrm{H}$, s), $0.07(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 138.6$, $128.3,127.6,127.5,118.6\left(q, J_{C-F}=319.5 \mathrm{~Hz}\right), 80.0,79.8,76.1,72.8$, 70.1, 63.1, 40.8, 32.5, 29.1, 26.3, 25.6, 17.8, 12.5, -4.0, -5.1; HRFABMS $m / z$ calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{~F}_{3} \mathrm{SiS}\left(\mathrm{MH}^{+}\right) 541.2267$, found 541.2285.

Alkylation of Triflate 4 with 23e. To a solution of N -Cbzacetamide $23 \mathrm{e}(206 \mathrm{mg}, 1.065 \mathrm{mmol})$ and 18-crown-6 ( $287 \mathrm{mg}, 1.08$ mmol ) in THF ( 1 mL ) at room temperature was added a 0.5 M solution of KHMDS in toluene ( $1.60 \mathrm{~mL}, 0.800 \mathrm{mmol}$ ), and the mixture was stirred at room temperature for 30 min before cooling to $0{ }^{\circ} \mathrm{C}$. A solution of triflate $4(288 \mathrm{mg}, 0.542 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 80 min . The reaction was quenched with a saturated
aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the reaction mixture was extracted with EtOAc. The extract was washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $5 \rightarrow 20 \% \mathrm{EtOAc}$ in hexane) afforded N -alkylated product 27 ( $280 \mathrm{mg}, 90 \%$ ) and O-alkylated product 32 ( $23 \mathrm{mg}, 7 \%$ ).

N-Alkylated Product 27. Colorless oil; $[\alpha]^{28}{ }_{\mathrm{D}}+35.5$ (c 1.01, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 2928, 2856, 1737, 1702, 1345, $1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.41-7.38(2 \mathrm{H}, \mathrm{m}), 7.37-7.28(7 \mathrm{H}, \mathrm{m})$, $7.26(1 \mathrm{H}, \mathrm{m}), 5.20$ and $5.14($ each $1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.46$ and 4.45 (each $1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.18(1 \mathrm{H}, \mathrm{dd}, J=13.7,2.8 \mathrm{~Hz}), 3.86(1 \mathrm{H}$, dd, $J=13.7,10.2 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{ddd}, J=11.0,9.1,4.7 \mathrm{~Hz}), 3.41(1 \mathrm{H}$, $\mathrm{dt}, J=9.4,6.4 \mathrm{~Hz}), 3.37(1 \mathrm{H}, \mathrm{dt}, J=9.4,6.4 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{ddd}, J=$ $10.2,9.2,2.8 \mathrm{~Hz}), 3.23(1 \mathrm{H}$, ddd, $J=8.8,4.5,2.3 \mathrm{~Hz}), 2.48(3 \mathrm{H}, \mathrm{s})$, $1.82(1 \mathrm{H}, \mathrm{ddd}, J=12.6,4.6,2.6 \mathrm{~Hz}), 1.77(1 \mathrm{H}, \mathrm{qdt}, J=7.2,4.7,2.2$ $\mathrm{Hz}), 1.65-1.55(2 \mathrm{H}, \mathrm{m}), 1.48(1 \mathrm{H}$, ddtd, $J=13.0,9.7,6.4,6.0 \mathrm{~Hz})$, $1.40(1 \mathrm{H}$, dddd, $J=10.0,9.7,8.8,4.6 \mathrm{~Hz}), 1.32(1 \mathrm{H}$, dddd, $J=13.8$, $10.0,5.9,4.6 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.04(6 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 172.8,155.3,138.6,135.4,128.5$, 128.3 (x2), 128.1, 127.6, 127.4, 80.5, 79.2, 72.7, 70.1, 68.2, 66.9, 46.1, 41.1, 32.8, 29.3, 26.35, 26.33, 25.7, 17.9, 12.8, -3.9, -4.8; HRFABMS $m / z$ calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{NSi}\left(\mathrm{MH}^{+}\right) 584.3407$, found 584.3414 .

O-Alkylated Product 32. Colorless oil; $[\alpha]^{28}{ }_{\mathrm{D}}+10.3$ (c 0.71, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 2929, 2856, 1716, 1670, 1228, $1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.41-7.30(9 \mathrm{H}, \mathrm{m}), 7.26(1 \mathrm{H}, \mathrm{m}), 5.18$ $(2 \mathrm{H}, \mathrm{s}), 4.49(2 \mathrm{H}, \mathrm{s}), 4.32(1 \mathrm{H}, \mathrm{dd}, J=11.7,1.8 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{dd}, J=$ $11.6,5.8 \mathrm{~Hz}), 3.73(1 \mathrm{H}$, ddd, $J=10.9,9.4,4.9 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{dt}, J=$ $9.2,6.4 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dt}, J=9.4,6.5 \mathrm{~Hz}), 3.40(1 \mathrm{H}, \mathrm{ddd}, J=7.7,5.3$, $2.2 \mathrm{~Hz}), 3.29(1 \mathrm{H}$, ddd, $J=9.2,5.8,1.9 \mathrm{~Hz}), 2.07(3 \mathrm{H}, \mathrm{s}), 1.89(1 \mathrm{H}$, ddd, $J=12.6,4.8,2.6 \mathrm{~Hz}), 1.83(1 \mathrm{H}, \mathrm{qdt}, J=7.2,4.6,2.2 \mathrm{~Hz}), 1.70$ $(1 \mathrm{H}, \mathrm{m}), 1.65-1.52(3 \mathrm{H}, \mathrm{m}), 1.43(1 \mathrm{H}, \mathrm{ddt}, J=13.0,10.0,5.3 \mathrm{~Hz})$, $0.95(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 0.85(9 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}), 0.02(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 167.9,161.4,138.6,136.0,128.5,128.3$, $128.25,128.19,127.6,127.5,80.6,79.8,72.8,70.2,68.0,67.4,63.6$, 41.1, 32.6, 29.2, 26.5, 25.7, 18.4, 17.9, 12.5, -4.1, -5.0; HRFABMS m/ $z$ calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{NSi}\left(\mathrm{MH}^{+}\right) 584.3407$, found 584.3397. Alkylated positions of 27 and 32 were determined by HMBC experiments as shown in Figure S4 in the Supporting Information.

Hydroxy Amide 28. A mixture of imide 27 ( $435 \mathrm{mg}, 0.747 \mathrm{mmol}$ ) and $20 \%(\mathrm{w} / \mathrm{w}) \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(217 \mathrm{mg})$ in $\operatorname{AcOEt}(5 \mathrm{~mL})$ was stirred under a hydrogen atmosphere at room temperature for 1 h . The reaction mixture was filtered through a Celite pad and the filtrate was concentrated under reduced pressure. Purification by flash chromatography $(0 \rightarrow 30 \% \mathrm{MeOH}$ in EtOAc$)$ afforded hydroxy amide 28 (257 $\mathrm{mg}, 96 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{24}+43.5\left(c 0.56, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 3302, 2929, 2857, 1652, 1556, 1254, $1107 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 5.99(1 \mathrm{H}, \mathrm{br}$ s $), 3.84(1 \mathrm{H}$, ddd, $J=13.6,6.7,3.2 \mathrm{~Hz})$, $3.71-3.62(2 \mathrm{H}, \mathrm{m}), 3.54(1 \mathrm{H}, \mathrm{ddd}, J=11.0,9.0,4.5 \mathrm{~Hz}), 3.44(1 \mathrm{H}$, ddd, $J=8.6,3.8,2.4 \mathrm{~Hz}), 3.17(1 \mathrm{H}, \mathrm{td}, J=8.6,3.1 \mathrm{~Hz}), 3.05(1 \mathrm{H}, \mathrm{ddd}$, $J=13.3,8.3,4.4 \mathrm{~Hz}), 2.22(1 \mathrm{H}, \mathrm{br}$ s), $1.98(3 \mathrm{H}, \mathrm{s}), 1.88(1 \mathrm{H}, \mathrm{ddd}, J=$ $12.6,4.8,2.6 \mathrm{~Hz}), 1.85(1 \mathrm{H}, \mathrm{qdt}, J=7.2,4.6,2.2 \mathrm{~Hz}), 1.60-1.71(3 \mathrm{H}$, $\mathrm{m}), 1.58(1 \mathrm{H}$, dddd, $J=14.1,9.0,7.8,6.8 \mathrm{~Hz}), 1.46(1 \mathrm{H}$, dddd, $J=$ $14.1,8.1,6.1,3.7 \mathrm{~Hz}), 0.96(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}$, s), $0.05(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 169.9,81.7,80.1$, 65.6, 62.4, 41.4, 40.9, 33.1, 29.8, 29.2, 25.7, 23.3, 17.9, 12.7, -4.1 , -4.8; HRFABMS $m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 360.2570$, found 360.2568. Spectroscopic data were identical with those reported. ${ }^{14}$

Aldehyde 3. To a solution of alcohol $28(15 \mathrm{mg}, 0.041 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added Dess-Martin periodinane $(69 \mathrm{mg}, 0.16$ mmol ), and the reaction mixture was stirred at room temperature for 4 h. The reaction was quenched with a saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, and the mixture was extracted with EtOAc. The extract was washed with a saturated aqueous $\mathrm{NaHCO}_{3}$ solution, water, and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $3 \% \mathrm{MeOH}$ in EtOAc ) afforded aldehyde $3(11 \mathrm{mg}$, $76 \%$ ) as a colorless oil. $[\alpha]^{26}{ }_{\mathrm{D}}+21.8\left(c 0.51, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 3318, 2954, 2929, 2885, 2857, 1717, 1655, 1541, 1254, $1107 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 9.68(1 \mathrm{H}, \mathrm{dd}, J=4.6,0.6 \mathrm{~Hz}), 5.89(1 \mathrm{H}$, br s), $3.91(1 \mathrm{H}$, ddd, $J=13.6,7.4,2.8 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{ddd}, J=11.0,9.0$, $4.5 \mathrm{~Hz}), 3.41(1 \mathrm{H}, \mathrm{dt}, J=10.4,2.5 \mathrm{~Hz}), 3.07(1 \mathrm{H}, \mathrm{td}, J=9.0,2.9 \mathrm{~Hz})$, $2.88(1 \mathrm{H}$, ddd, $J=13.6,8.8,3.3 \mathrm{~Hz}), 2.53(1 \mathrm{H}$, ddd, $J=16.0,6.0,5.3$
$\mathrm{Hz}), 2.42(1 \mathrm{H}, \mathrm{ddt}, J=16.0,9.5,4.8 \mathrm{~Hz}), 2.05(3 \mathrm{H}, \mathrm{s}), 2.00(1 \mathrm{H}, \mathrm{ddt}$, $J=14.7,9.7,5.1 \mathrm{~Hz}), 1.89-1.83(2 \mathrm{H}, \mathrm{m}), 1.70-1.57(2 \mathrm{H}, \mathrm{m}), 0.99$ $(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.07(3 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 203.9,170.2,82.2,79.7,65.5,42.0,41.5,40.8$, 33.0, 26.2, 25.7, 23.1, 17.9, 12.9, -4.1, -4.8; HRFABMS $m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 358.2414$, found 358.2403. Spectroscopic data were identical with those reported. ${ }^{14}$

Alcohol 30. To a solution of phosphonate $2(66 \mathrm{mg}, 0.24 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added a 1.63 M solution of $n-\operatorname{BuLi}(0.15 \mathrm{~mL}, 0.24$ $\mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred at the same temperature for 1 h . The mixture was recooled to $-78^{\circ} \mathrm{C}$ and a solution of aldehyde $3(17 \mathrm{mg}, 0.047 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added. The reaction mixture was warmed to room temperature and then stirred for 17 h . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The extract was washed with water and brine, dried, and concentrated under reduced pressure. Purification by flash chromatography ( $50 \% \mathrm{EtOAc}$ in hexane) afforded dienoate $29(14 \mathrm{mg}, 62 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 5.91(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{s}), 5.80$ $(1 \mathrm{H}, \mathrm{br}$ s $), 4.17(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{ddd}, J=12.7,5.9,2.4$ $\mathrm{Hz}), 3.55(1 \mathrm{H}$, ddd, $J=11.1,8.6,4.7 \mathrm{~Hz}), 3.39(1 \mathrm{H}$, ddd, $J=8.8,4.5$, $2.3 \mathrm{~Hz}), 3.19-3.10(2 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}), 2.24(2 \mathrm{H}, \mathrm{q}, J=$ $7.5 \mathrm{~Hz}), 1.97(3 \mathrm{H}, \mathrm{s}), 1.88(1 \mathrm{H}$, ddd, $J=12.7,4.8,2.6 \mathrm{~Hz}), 1.82(3 \mathrm{H}$, s), $1.82(1 \mathrm{H}, \mathrm{m}), 1.68-1.59(2 \mathrm{H}, \mathrm{m}), 1.40(1 \mathrm{H}, \mathrm{m}), 1.29(3 \mathrm{H}, \mathrm{t}, J=$ $7.2 \mathrm{~Hz}), 0.96(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s}), 0.05(3 \mathrm{H}$, s); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 169.7,167.5,156.0,136.6,132.3$, 114.7, 81.2, 78.9, 65.7, 59.7, 41.5, 40.8, 32.7, 32.2, 25.8, 25.6, 23.3, $17.9,15.4,14.3,14.0,12.8,-4.1,-4.8$. Spectroscopic data were identical with those reported. ${ }^{14}$

To a solution of dienoate $29(14 \mathrm{mg}, 0.029 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ mL ) was added a 1.0 M solution of DIBAL-H in hexane $(0.12 \mathrm{~mL}$, 0.12 mmol ) at $-78{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at the same temperature for 15 min . The reaction was quenched with MeOH . The resulting mixture was diluted with a saturated aqueous sodium potassium tartrate solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried, and concentrated under reduced pressure. Purification by flash chromatography (EtOAc) afforded alcohol $30(10 \mathrm{mg}, 79 \%)$ as a colorless oil. $[\alpha]^{26}{ }_{\mathrm{D}}+16.6$ (c 0.73, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3304,2929,2884,2857,1658,1555,1375,1254$, $1105 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 5.86(1 \mathrm{H}, \mathrm{br}$ s $), 5.70(1 \mathrm{H}$, $\mathrm{t}, J=6.5 \mathrm{~Hz}), 5.58(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 4.30(2 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 3.76$ $(1 \mathrm{H}, \mathrm{m}), 3.54(1 \mathrm{H}, \mathrm{ddd}, J=11.0,8.0,4.8 \mathrm{~Hz}), 3.40(1 \mathrm{H}, \mathrm{ddd}, J=8.7$, $4.6,2.3 \mathrm{~Hz}), 3.17-3.09(2 \mathrm{H}, \mathrm{m}), 2.21(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}), 1.97(3 \mathrm{H}$, s), $1.87(1 \mathrm{H}$, ddd, $J=12.6,4.7,2.7 \mathrm{~Hz}), 1.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.83(1 \mathrm{H}, \mathrm{m})$, $1.82(3 \mathrm{H}, \mathrm{s}), 1.81(3 \mathrm{H}, \mathrm{s}), 1.66-1.58(2 \mathrm{H}, \mathrm{m}), 1.39(1 \mathrm{H}$, dddd, $J=$ $13.8,8.7,7.4,4.6 \mathrm{~Hz}), 0.96(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}$, s), $0.05(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 169.7,138.9,136.2$, 127.0, 124.3, 81.2, 79.0, 65.8, 60.0, 41.5, 40.9, 32.7, 32.5, 25.8, 25.2, 23.3, 17.9, 14.1, 13.9, 12.8, -4.1, -4.8; HRFABMS $m / z$ calcd for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{SiNa}\left(\mathrm{MNa}^{+}\right)$462.3016, found 462.3015. Spectroscopic data were identical with those reported. ${ }^{14}$

Diol 31. To a solution of TBS ether $30(27 \mathrm{mg}, 0.062 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a 1.0 M solution of $n-\mathrm{Bu}_{4} \mathrm{NF}$ in THF ( $0.062 \mathrm{~mL}, 0.062 \mathrm{mmol}$ ), and the reaction mixture was stirred at room temperature for 2 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the resulting mixture was extracted with $\mathrm{CHCl}_{3}$. The extract was washed with brine, dried, and concentrated under reduced pressure. Purification by flash chromatography (5\% MeOH in $\left.\mathrm{CHCl}_{3}\right)$ afforded diol $31(19 \mathrm{mg}, 96 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{26}-99.7\left(c 0.48, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3315,2931,2860,1651$, 1557, 1431, 1377, 1107, $1069 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ $6.06(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.70(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 5.58(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 4.31$ $(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{br}$ s), $3.97(1 \mathrm{H}, \mathrm{ddd}, J=14.6,8.3,2.9$ $\mathrm{Hz}), 3.44(1 \mathrm{H}, \mathrm{ddd}, J=11.3,9.2,4.6 \mathrm{~Hz}), 3.40(1 \mathrm{H}, \mathrm{ddd}, J=8.6,4.8$, $2.4 \mathrm{~Hz}), 3.12(1 \mathrm{H}, \mathrm{ddd}, J=14.6,4.7,2.7 \mathrm{~Hz}), 3.07(1 \mathrm{H}, \mathrm{dt}, J=9.3,2.8$ $\mathrm{Hz}), 2.19(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}), 2.05(3 \mathrm{H}, \mathrm{s}), 1.94(1 \mathrm{H}, \mathrm{ddd}, J=12.6$, $4.6,2.5 \mathrm{~Hz}), 1.86(1 \mathrm{H}, \mathrm{qdt}, J=7.2,4.7,2.3 \mathrm{~Hz}), 1.82(3 \mathrm{H}, \mathrm{s}), 1.80$ $(3 \mathrm{H}, \mathrm{s}), 1.69(1 \mathrm{H}, \mathrm{br}$ s), $1.64(1 \mathrm{H}$, ddd, $J=12.6,11.3,4.8 \mathrm{~Hz}), 1.58$ ( $1 \mathrm{H}, \mathrm{ddt}, J=14.0,8.4,7.1 \mathrm{~Hz}$ ), $1.38(1 \mathrm{H}$, dddd, $J=14.0,7.9,7.7,4.8$ $\mathrm{Hz}), 0.93(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 172.2$,
139.0, 136.2, 127.0, 124.2, 82.4, 79.6, 62.0, 60.0, 40.9, 38.4, 32.60, 32.56, 25.2, 22.9, 14.1, 13.9, 12.7; HRFABMS $m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$348.2151, found 348.2135. Spectroscopic data were identical with those reported. ${ }^{14}$

Brevisamide (1). To a solution of diol 31 ( $19 \mathrm{mg}, 0.0594 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(103 \mathrm{mg}, 1.19 \mathrm{mmol})$, and the reaction mixture was stirred at room temperature for 1 h . The reaction mixture was directly purified by flash chromatography $(2 \rightarrow 10 \%$ MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford brevisamide (1) ( $17 \mathrm{mg}, 88 \%$ ) as a colorless oil. $[\alpha]_{\mathrm{D}}^{26}-13.0(c 1.19, \mathrm{MeOH})$; IR $\left(\mathrm{CHCl}_{3}\right) 3336$, 2931, 2858, 1655, 1560, 1438, 1376, 1158, 1107, $1069 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 600 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 10.10(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 6.24(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz})$, $6.05(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=14.1,2.8 \mathrm{~Hz}), 3.43(1 \mathrm{H}$, ddd, $J=11.4,9.3,4.6 \mathrm{~Hz}$ ), $3.41(1 \mathrm{H}$, ddd, $J=9.2,4.0,2.4 \mathrm{~Hz}), 3.34$ $(1 \mathrm{H}, \mathrm{dd}, J=14.1,6.8 \mathrm{~Hz}), 3.09(1 \mathrm{H}, \mathrm{ddd}, J=9.4,6.9,2.8 \mathrm{~Hz}), 2.37$ $(2 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}), 2.34(3 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}), 1.97(3 \mathrm{H}, \mathrm{s}), 1.92(1 \mathrm{H}$, ddd, $J=12.6,4.8,2.5 \mathrm{~Hz}), 1.88(3 \mathrm{H}, \mathrm{s}), 1.86(1 \mathrm{H}, \mathrm{qdt}, J=7.2,4.6,2.3$ $\mathrm{Hz}), 1.67(1 \mathrm{H}$, dddd, $J=13.9,9.2,7.7,6.4 \mathrm{~Hz}), 1.62(1 \mathrm{H}$, ddd, $J=$ $12.6,11.4,4.6 \mathrm{~Hz}), 1.46(1 \mathrm{H}, \mathrm{dtd}, J=13.9,7.9,4.2 \mathrm{~Hz}), 0.98(3 \mathrm{H}, \mathrm{d}, J$ $=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 194.3,173.8,160.9$, 137.2, 136.8, 126.2, 83.1, 80.3, 64.9, 42.5, 40.8, 34.2, 33.2, 26.9, 22.4, 14.5, 14.0, 13.0; HREIMS $m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$323.2097, found 323.2095. Spectroscopic data were identical with natural brevisamide (1) $\left([\alpha]_{\mathrm{D}}^{22}-13(c 0.18, \mathrm{MeOH})\right) .{ }^{8}$

## - ASSOCIATED CONTENT

## (s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00484.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds. (PDF)

## AUTHOR INFORMATION

## Corresponding Author

*E-mail: mori@meijo-u.ac.jp.

## Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

This study was partially supported by a Grant-in-Aid for Scientific Research (C) (24590033), Grant-in-Aid for Young Scientists (B) (26860018) from the Japan Society for the Promotion of Science (JSPS), and the Science Research Promotion Fund from the Promotion and Mutual Aid Corporation for Private Schools of Japan.

## REFERENCES

(1) (a) Kornprobst, J.-M. Encyclopedia of Marine Natural Products; Wiley-Blackwell: Weinheim, Germany, 2010; Vol. 1, Chapter 11, pp 212-220. (b) Magaña, H. A.; Contreras, C.; Villareal, T. A. Harmful Algae 2003, 2, 163-171. (c) Landsberg, J. H.; Flewelling, L. J.; Naar, J. Harmful Algae 2009, 8, 598-607.
(2) (a) Lin, Y.-Y.; Risk, M.; Ray, S. M.; Engen, D. V.; Clardy, J.; Golik, J.; James, J. C.; Nakanishi, K. J. Am. Chem. Soc. 1981, 103, 6773-6775. (b) Shimizu, Y. Dinoflagellate Toxins. In Marine Natural Products; Scheuer, P. J., Ed.; Academic Press: New York, 1978; Vol. 1. (c) Shimizu, Y. Chem. Rev. 1993, 93, 1685-1698. (d) Yasumoto, T.; Murata, M. Chem. Rev. 1993, 93, 1897-1909. (e) Murata, M.; Yasumoto, T. Nat. Prod. Rep. 2000, 17, 293-314. (f) Yasumoto, T. Chem. Rec. 2001, 1, 228-242. (g) Daranas, A. H.; Norte, M.; Fernández, J. J. Toxicon 2001, 39, 1101-1132. (h) Satake, M. In Topics in Heterocyclic Chemistry; Kiyota, H., Ed.; Springer: Berlin, 2006; Vol. 5, pp 21-51.
(3) (a) Bourdelais, A. J.; Jacocks, H. M.; Wright, J. L. C.; Bigwarfe, P. M., Jr.; Baden, D. G. J. Nat. Prod. 2005, 68, 2-6. (b) Fuwa, H.; Ebine, M.; Bourdelais, A. J.; Baden, D. G.; Sasaki, M. J. Am. Chem. Soc. 2006, 128, 16989-16999.
(4) (a) Satake, M.; Campbell, A.; Wagoner, R. M. V.; Bourdelais, A. J.; Jacocks, H.; Baden, D. G.; Wright, J. L. C. J. Org. Chem. 2009, 74, 989-994. (b) Wagoner, R. M. V.; Satake, M.; Bourdelais, A. J.; Baden, D. G.; Wright, J. L. C. J. Nat. Prod. 2010, 73, 1177-1179.
(5) Truxal, L. T.; Bourdelais, A. J.; Jacocks, H.; Abraham, W. M.; Baden, D. G. J. Nat. Prod. 2010, 73, 536-540.
(6) (a) Poli, M. A.; Mende, T. J.; Baden, D. G. Mol. Pharmacol. 1986, 30, 129-135. (b) Trainer, V. L.; Baden, D. G.; Catterall, W. A. J. Biol. Chem. 1994, 269, 19904-19909. (c) Baden, D. G.; Bourdelais, A. J.; Jacocks, H.; Michelliza, S.; Naar, J. Env. Health Persp. 2005, 113, 621625.
(7) Bourdelais, A. J.; Campbell, S.; Jacocks, H.; Naar, J.; Wright, J. L. C.; Carsi, J.; Baden, D. G. Cell. Mol. Neurobiol. 2004, 24, 553-563.
(8) Satake, M.; Bourdelais, A. J.; Wagoner, R. M. V.; Baden, D. G.; Wright, J. L. C. Org. Lett. 2008, 10, 3465-3468.
(9) (a) Nakanishi, K. Toxicon 1985, 23, 473-479. (b) Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189-1192. (c) Shirai, T.; Kuranaga, T.; Wright, J. L. C.; Baden, D. G.; Satake, M.; Tachibana, K. Tetrahedron Lett. 2010, 51, 1394-1396. (d) Byers, J. A.; Jamison, T. F. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 16724-16729. (e) Shirai, T.; Takimoto, Y.; Kuranaga, T.; Tachibana, K.; Satake, M.; Baden, D. G.; Wright, J. L. C. Heterocycles 2014, 89, 127-142.
(10) (a) Kuranaga, T.; Shirai, T.; Baden, D. G.; Wright, J. L. C.; Satake, M.; Tachibana, K. Org. Lett. 2009, 11, 217-220. (b) Tsutsumi, R.; Kuranaga, T.; Wright, J. L. C.; Baden, D. G.; Ito, E.; Satake, M.; Tachibana, K. Tetrahedron 2010, 66, 6775-6782.
(11) (a) Smith, A. B., III; Kutsumura, N.; Potuzak, J. Tetrahedron Lett. 2011, 52, 2117-2119. (b) Yadav, J. S.; Raju, A.; Ravindar, K.; Reddy, B. V. S. Tetrahedron Lett. 2013, 54, 3227-3229. (c) Kumaraswamy, G.; Murthy, A. N.; Narayanarao, V.; Vemulapalli, S. P. B.; Bharatam, J. Org. Biomol. Chem. 2013, 11, 6751-6765.
(12) Sabitha, G.; Nayak, S.; Bhikshapathi, M.; Yadav, J. S. Org. Lett. 2011, 13, 382-385.
(13) Yadav, J. S.; Reddy, N. M.; Rahman, M. A.; Prasad, A. R.; Reddy, B. V. S. Tetrahedron 2013, 69, 8618-8625.
(14) Fadeyi, O. O.; Lindsley, C. W. Org. Lett. 2009, 11, 3950-3952.
(15) Lee, J.; Oh, H.-S.; Kang, H.-Y. Tetrahedron Lett. 2015, 56, 1099-1102.
(16) Ghosh, A. K.; Li, J. Org. Lett. 2009, 11, 4164-4167.
(17) Lee, J.; Panek, J. S. Org. Lett. 2009, 11, 4390-4393.
(18) Herrmann, A. T.; Martinez, S. R.; Zakarian, A. Org. Lett. 2011, 13, 3636-3639.
(19) Sudharani, C.; Venukumar, P.; Sridhar, P. R. Eur. J. Org. Chem. 2014, 2014, 8085-8093.
(20) (a) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1996, 118, 8158-8159. (b) Mori, Y.; Yaegashi, K.; Furukawa, H. Tetrahedron Lett. 1999, 40, 7239-7242. (c) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1997, 119, 4557-4558. (d) Furuta, H.; Hasegawa, Y.; Mori, Y. Org. Lett. 2009, 11, 4382-4385. (e) Sakai, T.; Matsushita, S.; Arakawa, S.; Mori, K.; Tanimoto, M.; Tokumasu, A.; Yoshida, T.; Mori, Y. J. Am. Chem. Soc. 2015, 137, 14513-14516.
(21) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183-2186.
(22) Mori, Y.; Hayashi, H. J. Org. Chem. 2001, 66, 8666-8668.
(23) Crabtree, R. H.; Davis, M. W. J. Org. Chem. 1986, 51, 26552661.
(24) (a) Mitsunobu, O.; Takizawa, S.; Morimoto, H. J. Am. Chem. Soc. 1976, 98, 7858-7859. (b) Koppel, I.; Koppel, J.; Koppel, I.; Leito, I.; Pihl, V.; Wallin, A.; Grehn, L.; Ragnarsson, U. J. Chem. Soc., Perkin Trans. 2 1993, 655-658.
(25) (a) Ciufolini, M. A.; Shen, Y.-C.; Bishop, M. J. J. Am. Chem. Soc. 1995, 117, 12460-12469. (b) Ciufolini, M. A.; Shen, Y.-C. Tetrahedron Lett. 1995, 36, 4709-4712.
(26) Morimoto, H.; Furukawa, T.; Miyazima, K.; Mitsunobu, O. Chem. Lett. 1973, 821-824.
(27) Brown, D. A.; Glass, W. K.; Mageswaran, R.; Mohammed, S. A. Magn. Reson. Chem. 1991, 29, 40-45.
(28) Tanaka, K.; Yoshifuji, S.; Nitta, Y. Chem. Pharm. Bull. 1988, 36, 3125-3129.
(29) Shangguan, N.; Katukojvala, S.; Greenberg, R.; Williams, L. J. J. Am. Chem. Soc. 2003, 125, 7754-7755.
(30) Delgado, M.; Martín, J. D. J. Org. Chem. 1999, 64, 4798-4816.


[^0]:    Received: March 7, 2016
    Published: April 8, 2016

[^1]:    ${ }^{a}$ A small amount of product was detected by TLC but not isolated.

